
Communications on Applied Electronics (CAE) - ISSN : 2394 - 4714
Foundation of Computer Science FCS, New York, USA
Volume 7 - No. 4, July 2017 - www.caeaccess.org

A Compression Algorithm Design and Simulation for
Processing Large Volumes of Data from Wireless

Sensor Networks

Priyanka Vangali
University of Houston, Clear Lake

2700 Bay Area Blvd
Houston, TX77058, USA

Xiaokun Yang
University of Houston, Clear Lake

2700 Bay Area Blvd
Houston, TX77058, USA

ABSTRACT
As Internet of things (IoT) advances, the growth in data volume
from wireless sensor networks (WSNs) is explosive and is likely
to overwhelm traditional datacenters. Therefore this paper presents
a field-programmable gate array (FPGA) design and simulation on
a data compression algorithm as a case study. By collecting and
compressing raw data from IoT network, the large amount of sen-
sor data is dramatically reduced and translated into valuable infor-
mation to the servers. Simulation results show that the compression
ratio can reach 30.08% with a very low processing latency (20 ms
for compressing 1 KB sensor data).

Keywords
Data compression, Field-programmable gate array (FPGA), In-
ternet of things (IoT), Wireless Sensor Networks (WSNs)

1. INTRODUCTION
Recent technological breakthrough in low power processing
units and communication devices have enabled the development
of distributed autonomous nodes able to sense environmental
data, compute and transmit it using wireless communication to
a base station known as sink for future analysis; thus, forming a
wireless sensor network (WSN) [1, 2].
Generally WSN is a wireless network consisting of spatially dis-
tributed autonomous devices using sensors to monitor physical
or environmental conditions. In mesh type of network, each node
relays data for network, and all the mesh nodes cooperate in dis-
tribution of data in the network.
In this paper, we employ a specific Bluetooth mesh technol-
ogy which enables Bluetooth-equipped devices to receive and
act upon messages. The devices also repeat the message to sur-
rounding devices thus extending the range of Bluetooth devices
and turning it into a mesh network for Internet of things (IoT).
In applications such as environmental science, water resources,
ecosystems and health care where continuous monitoring of
large amount of data, the WSN plays an important role and gen-
erates data size of the order of trillions bytes per day on just one
edge/fog node. Therefore, it is necessary to design a compression
scheme to transmit the data in the network when the aggregate
data of network is produced at a rate more than the bandwidth.
Compression can be used to reduce the data representation when
applications store the data locally so that more data can be re-
membered.
Compression could be performed by lossy or lossless techniques.
In lossy compression scheme, the bits are reduced by identify-
ing unnecessary information and removing it. High compression
ratios are observed at the expense of moderate accuracy losses
in many WSN applications. Lossless technique is a converse of
lossy technique. In lossless compression scheme, the bits are
reduced by identifying and eliminating statistical redundancy.

There is no information loss and the file can be decompressed
to get the original file.
As a case study, we use a lossy compression algorithm to com-
press data when sensor accuracy is expressed in terms of margin,
and the probability distribution of error is either uniform or un-
known [3]. More specifically, the main contributions are:

(1) We presented a synthesizable compression algorithm using
which large amount of sensor data can be compressed by an
field-programmable gate array (FPGA) engine before sending
the data to actual servers. The FPGA used in this project is
Anvyl Spartan-6-LX45.

(2) The compression algorithm tries to represent minimum sets
of data instead of representing the whole set. This type of com-
pression technique is lossy scheme which is explained above.
The algorithm takes into consideration of all the possibilities
of data and stores only the data is needed.

(3) In order to program the FPGA, we applied Mentor Graphic
ModelSim for Simulation, ISE design suite for synthesis, iM-
PACT for generating the bit stream and thereby programming
the FPGA. We were able to get the compression rate ranging
from 30.08% to 85% .

The rest of the paper is organized as follows. In section 2 we
describe the relevant work. The compression algorithm and flow
chart are described in section 3. In section 4 the design of the al-
gorithm is illustrated. In section 5 we describe about the Verilog
Simulation. Conclusion is in section 6.

2. RELATED WORK
In WSN the two main elementary activities are data acquisition
and transmission. In order to reduce the power associated while
transmission various compression schemes such as K-RLE [4],
Adaptive Huffman coding [5] and many more [6], in this pa-
per we implement the compression algorithm using a low-cost
system-on-chip (SoC) architecture proposed in [7, 8].
As a discussion in [9], authors explained about the algorithm
that is developed in context of habitat monitoring which achieves
a good reduction in the amount of data sets that has to be trans-
mitted. It introduces a small amount of error into each reading,
bounded by a control knob, the larger the bound on this error, the
greater the savings from compression.
Authors have also implemented and integrated in the query en-
gine component of the extensible sensing system (ESS) appli-
cations. The ESS consists of motes connected to weather sens-
ing boards that communicate using a low power ChipCon radios
with Stargate micro-servers which are connected to an oracle
back-end via 802.11. Finally, a comparison of LTC , LZW 12-
bit, LZW 14-bit, and wavelet compression techniques have been
made and observed that LTC compression technique has made a
remarkable compression rate compared to other techniques.
In [10], authors focus on data compression algorithms and proto-
col development to effectively support data gathering in WSNs.

1



Communications on Applied Electronics (CAE) - ISSN : 2394 - 4714
Foundation of Computer Science FCS, New York, USA
Volume 7 - No. 4, July 2017 - www.caeaccess.org

The standard is named as compressed data stream protocol
(CDP) and is implemented on tinyOS platform using the nesC
programming language and TOSSIM simulator. The key fea-
tures of this compression scheme is minimizing the protocol
overhead and at the same time providing considerable flexibil-
ity for complex network data gathering operations where diverse
sampling rates and both lossless and lossy compression algo-
rithms with different parameters are simultaneously supported.
In this approach, CDP can significantly reduce retransmission in
noisy WSN, which reduces the data retransmission and the total
lower layer packet overhead, thereby reducing the total transmit-
ted bytes over the network. Reliability is not being addressed by
CDP, as CDP is intended to be a lightweight transport protocol.
Furthermore, paper [11] shows how a data compression appli-
cation such as collection tree protocol (CTP) is used for data
collection from different sensor nodes into the root node and
achieve data compression using compression algorithm in order
to increase the network lifetime. Similarly, paper [12] presents a
way to design/customize a reconfigurable hardware to the tar-
get application domain and make the SoC custom-fabricated.
While [13] presents the generic IoT device design flow and vari-
ous platform choices for IoT devices to efficiently tradeoff cost,
power, performance and volume constraints.

3. ALGORITHM
Data reduction before transmission, either by data compression
or feature extraction would significantly increase the network life
time. In this section, we introduce a low-latency and energy-
efficient compression algorithm. It requires less storage com-
pared to other techniques. This technique was earlier developed
for habitat monitoring that obtains up to 20 to 1 data reduction
in the amount of environmental data that needs to be transmitted
on certain data sets.
More specifically, let ri = (ti, vi) be the inputs from the sen-
sors in the network. X-axis represents the time and Y-axis repre-
sents the value. We consider the first two points from the input
data stream as r0 and r1. The first point is saved a z with X-
coordinate of t0 and Y-coordinate of v0. The second data point is
being transformed to a vertical line segment with X-coordinate
of t1 and error range as e. Therefore, the Y-coordinate of each
point lies within the range [v1 − e, v1 + e]. Then the high line is
formed by joining the v1 + e point and the z, similarly the low
line is formed by joining the v1 − e point and the z. UL and LL
represent the high and low points of of the high line and low line
at t1, respectively.
The next input data point continues to transform into a vertical
line segment, we calculate the point of intersection of the high
line and low line at t2. ul and ll represent the high and low points
of the new data point as v2+e and v2−e, respectively. Then we
need to update the z, UL, and LL by checking if the new (third)
data point is lying inside the region, on the region, or outside the
region.
Totally there will be 5 different cases to update z, in what fol-
lows the UL and LL should be recompute. The first and second
cases shown in Fig. 1(a) and Fig. 1(b) are that both ul and ll are
greater than the high line or lower than the low line. In these two
cases z should be updated. In other words, the previous z cannot
represent the new data point so that it will be remembered by
hardware buffers/memory, and then r1 will be the new z used to
reform the high line and low line.
From the hardware perspective, the high line and low line slope
can be formulated as

SHL =
(v1 + e)− v0

t1− t0
(1)

and

SLL =
(v1− e)− v0

t1− t0
. (2)

(a) Both limits are greater than the high
line

(b) Both limits are lower than the low
line

Fig. 1: Both limits are out of the range – new point cannot be represented by
z

Then, the upper limit on the high line at point t2 can be calculated
as

HLt2 = (t2− t0)× SHL + v0 (3)

and the lower limit on the Low Line at point t2 can be calculated
as

LLt2 = (t2− t0)× SLL + v0. (4)

Moreover, Fig. 2(a) shows the case that ul is greater than the high
line and ll is lower than the high line. Likewise, Fig. 2(b) shows
an example that ul is greater than low line and ll is less than low
line. In the first case the low line should be updated to reduce
the compression range; on the contrary the high line should be
modified in the second case.
Finally, if ul is less than high line and ll is greater than low
line, which is shown in Fig. 2(c), both the high line and low line
should be updated. In sum, for the case in Fig. 2 the new point
input can be represented by z so that it can be ignored by the
cloud/fog servers.

4. IMPLEMENTATION
In this section, we briefly introduce the sensor prototype and
FPGA design structure. In what follows, we focus on the hard-
ware description language (HDL) design on the algorithm.

4.1 CSR Mesh
In IoT, it is important that things or devices in the network have
access to information from and to the Internet irrespective of how
far they are from the access point. These things are the low en-
ergy consuming devices out of which Bluetooth smart is one of
the option. Thus, a combination of Bluetooth smart and the mesh
technology is utilized in our work as a sensor network prototype.
Actually, Bluetooth mesh is based on the existing Bluetooth low
energy technology known as Bluetooth smart. It creates a mesh

2



Communications on Applied Electronics (CAE) - ISSN : 2394 - 4714
Foundation of Computer Science FCS, New York, USA
Volume 7 - No. 4, July 2017 - www.caeaccess.org

(a) ul out of the range but ll in the
range

(b) ul in the range but ll out of the
range

(c) Both limits in the range

Fig. 2: At least one point in the range – new point can be represented by z

network from existing Bluetooth smart and smart ready devices.
It has a capability to increase the scale of what we can control via
our mobile devices. The power consumption is 20× less than that
of Wi-Fi. Each device (single node) in the network is identified
with 128-bit Device UUID.
In our work, we use CSR1010 Bluetooth models to estabilish the
mesh network involving one IoT host/server and three humid-
ity sensors. The mesh control protocol is used to send control
and status messages to devices organized in mesh network. The
mesh protocol is used to associate devices to the specific net-
work. More important, the CSR mesh has the ability to overlay
networks in the same building by which we can have more flex-
ibility over facilities network, employee network and individual
room networks during deployment of this mesh technology.

4.2 FPGA Structure
In addition, we perform the compression ratio display on an An-
vyl FPGA board. The Anvyl development board is based on Xil-
inx Spartan 6 XC6SLX45-CSG48 FPGA with a speed grade of
-3. On the board 6 7-segment displays are multiplexed to get the
output illuminated in each specific display. The 4 most signifi-
cant displays are used as the input data counters, and the 2 least
significant displays are applied as the output data timers.
A scanning display circuit is used to show a 2-digit number on
each display. This circuit drives the cathode signals and corre-
sponding anode patterns of each digit in a continuous succession,

at an update rate which is faster than the human eye response.
Each digit is illuminated just one-sixth of the time, but the digit
appears continuously illuminated. In order to find all the 6 digits
to appear continuously illuminated, each digit has to be driven
once in every 1 to 16 ms at a refresh frequency of 1 KHz to 60
Hz.
Moreover, in this work we employ ISE design suite for synthe-
sizing our Verilog code and ISE iMPACT for deploying the code
on the FPGA. ISE webpack edition offers HDL synthesis and
simulation, implementation, device fitting and JTAG program-
ming. During synthesis and implementation in ISE design suite,
a “.bit” file is generated from the Verilog code and this “.bit” file
can then be used to program the FPGA. The FPGA can be pro-
grammed over the USB JTAG at port J12 using Xilinx’s iMPACT
software or Digilent Adept software.

4.3 HDL Design
In cases where data has to be transmitted over the network,
it is preferable to transmit less amount data for a good net-
work life time. This could be achieved by data compression lo-
cally before the transmission. Compression helps in reducing
the data storage space and transmission capacity. As shown in
Fig. 3, the compression design structure involves 4 inputs, clock
(clk), reset (rst), compression enable (com en), and test mode
(test mode[2:0]) signals. Additionally there are 2 output inter-
faces, “ini cnt[15:0]” and “com cnt[15:0]”, which are used to
monitor the initial data count and compressed data count.
The main function of the design under test (DUT) is the high
line intercept point (HP) and low line intercept point (LP) de-
scription. Let HP denotes the intercept of high line with the next
dataset, and similarly the LP represents the intercept of low line
with the next dataset. Hence, the HP can be calculated as:

HP =
TP

TU
× (UL− v0) + v0 (5)

and the LP can be written as:

LP =
TP

TL
× (LL− v0) + v0 (6)

where “TP” is the time at which the new dataset is available,
“TU” is the time at which the “UL” is obtained, and “TL” is the
time at which “LL” is obtained. From the hardware design per-
spective, Fig. 4 and Fig. 5, respectively, show the design structure
of HP and LP computation.

Fig. 4: HP Calculation

3



Communications on Applied Electronics (CAE) - ISSN : 2394 - 4714
Foundation of Computer Science FCS, New York, USA
Volume 7 - No. 4, July 2017 - www.caeaccess.org

Fig. 3: Compression block structure

Fig. 5: Low Line point Calculation

5. EXPERIMENTAL RESULTS
In this section, the compression performance is estimated as
compression ratio and processing latency. Furthermore, the hard-
ware cost of the display logic is collected. Finally, we show the
demo on the Anvyl Spartan 6 FPGA board.
Compression ratio: Compression ratio is the only factor which
determines the good compression algorithm suitable to WSNs.
In WSNs, higher compression means less amount of data has to
be transmitted or stored. Basically, the compression rate can be
calculated as

CompressionRatio = 1− CompressedSize

OriginalSize
(7)

Processing efficiency: The system has been designed using Ver-
ilog HDL. We simulated the DUT in Mentor Graphic ModelSim
for checking the results. Fig. 6 shows the simulation waveform.
Additionally we also design a monitor in the test bench to count
the number of both input and output data, monitor the time con-
sumption, and auto-compute the compression rate. As an exam-
ple shown in Fig. 7, in this test vector, we achieves a 30% data
compression for processing 1024 Bytes data and spends 20 ms
calculation latency.

Fig. 6: Simulation waveform

Fig. 7: Simulation results shown in the transcript window

FPGA demo and slice count: In what follows, a relatively low
cost Anvyl development board having configuration as Spartan
6 XC6SLX45-CSG484 FPGA with a speed grade of -3 has been
chosen for implementing this project. All the sensor data is given
as inputs to the FPGA board, and an energy efficient compression
algorithm is developed for compressing the sensor data before
sending it to the actual server.
To get clear results of the compression implementation, a seven
segment display is designed and programmed on the FPGA
board. First of all, a simulation was run to check the waveform
of Verilog code for implementing the seven segment display. The
ISE design suite is used to generate the “*.bit” file during simu-
lation. For configuration, the program searches for all the “*.bit”
files inside the folder. The FPGA configuration has been done
using Xilinx iMPACT.
After simulation and implementation, the slice count used is
found to be 34 out of 27288 and as stated above the speed of
anvyl board is of grade -3. Figure 8 shows the desired number
specified in the Verilog code is been displayed on the seven seg-
ment display.

Fig. 8: FPGA results

4



Communications on Applied Electronics (CAE) - ISSN : 2394 - 4714
Foundation of Computer Science FCS, New York, USA
Volume 7 - No. 4, July 2017 - www.caeaccess.org

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a way to compress sensor data be-
fore actually transmitting it to the fog/cloud servers. The algo-
rithm is designed in Verilog HDL and verified using Mentor
Graphic ModelSim. We have also synthesized and implemented
the seven segment display on the Anvyl Spartan 6 Xilinx devel-
opment board. Simulation results showed a reduction of the data
size (30.08%) and a fast processing speed (20ms for 1 KB data)
based on the design.
Future scope for this paper would be integrating the compression
algorithm on FPGA board with the mesh network. Instead of
controlling the mesh network by software, the FPGA board will
be employed as a part of the smart fog/edge computing edge.

7. REFERENCES
[1] X. Liu, J. Zhou, C. Wang, etc. “An Ultralow-Voltage Sensor

Node Processor With Diverse Hardware Acceleration and
Cognitive Sampling for Intelligent Sensing”, IEEE Trans.
on Circuits and Systems-II: Express Briefs, Vol. 62, No. 12,
PP. 1149 - 1153, Aug. 2015

[2] M. Fan, Q. Han, and X. Yang, “Energy Minimization for
On-Line Real-Time Scheduling with Reliability Awareness”,
Journal of Syst. and Software, Vol. 127, PP. 168-176, May
2017.

[3] H. P. Medeiros, M. Maciel, R. Souza, and M. Pellenz
“Lightweight Data Compression in Wireless Sensor Net-
works Using Huffman Coding”, Intl. Journal of Distributed
Sensor Networks, PP. 1550-1477, Jan. 2014.

[4] E. Capo-Chichi, H. Gyennet, and J. Friedt, “K-RLE : A
new Data Compression Algorithm for Wireless Sensor Net-
work”, 2009 3rd Intl. Conference on Sensor Technolo-
gies and Applications (SENSORCOMM2009), PP. 502–
507, Aug. 2009

[5] M. Yuanbin, Q. yubing, L.Jizhong, L.Yanxia “A Data Com-
pression Algorithm Based On Adaptive Huffman Code for
Wireless Sensor Networks”, 2011 4th Intl. Conference on
Intelligent Computation Technology and Automation (ICI-
CTA2011), April 2011

[6] B. Ying, “An Energy-Efficient Compression Algorithm for
Spatial Data in Wireless Sensor Networks”, 2016 18th
Intl. Conference on dvanced Communication Technology
(ICACT2016), PP. 515–426, March 2016

[7] X. Yang and J. Andrian, “A High Performance On-Chip Bus
(SBUS) Design and Verification”, IEEE Trans. Very Large
Scale Integr. (TVLSI) Syst., vol. 23, no. 7, pp. 1350–1354,
July 2014.

[8] X. Yang and W. Wen, “Design of A Pre-Scheduled Data Bus
for Advanced Encryption Standard Encrypted System-on-
Chips”, 2017 22nd Asia and South Pacific Design Automa-
tion Conference (ASP-DAC2017), pp. 506-511, Jan. 2017.

[9] T. Schoellhammer, B. Greenstein, E. Osterweil, M. Wim-
brow, and D. Estrin, “Lightweight Temporal Compression of
Microclimate Datasets”, 2004. 29th Annual IEEE Intl. Con-
ference on Local Computer Networks, PP. 515–426, Dec.
2004.

[10] Y. Liang and N. Erratt “Compressed Data – Stream Proto-
col: An Energy Efficient Compressed Data – Stream Proto-
col for Wireless Sensor Networks”, 2011 IET Communica-
tions, Vol. 5, No. 18, PP. 2673 – 2683, Dec. 2011.

[11] R. Sharma, “A Data Compression Applications for Wire-
less Sensor Networks Using LTC Algorithmic”, 2015 IEEE
Intl. Conference on Electro/Information Technology (EIT),
PP. 598–604, Oct. 2015.

[12] K. Compton and S. Hauck “Automatic Design of Reconfig-
urable Domain-Specific Flexible Cores”, IEEE Trans. Very

Large Scale Integr. Syst. (TVLSI), Vol. 16, No. 5, PP. 493-
503, May 2008.

[13] D. Chen, J. Cong, S. Gurumani, etc. “Platform Choices
and Design Demands for IoT Platforms: Cost, Power, and
Performance Tradeoffs”, IET Journals, Vol. 1, No. 1, PP.
70–77, Dec. 2016.

[14] I. Beretta, V. Rana, D. Atienza, and D. Sciuto “A Mapping
Flow for Dynamically Reconfigurable Multi-Core System-
on-Chip Design”, IEEE Trans. Comput.-Aided Design In-
tegr. Circuits Syst. (TCAD), Vol. 30, No. 8, PP. 1211-1224,
Aug. 2011

[15] X. Yang, N. Wu, and J. H. Andrian, “A novel bus transfer
mode (AS Transfer) and a performance evaluation method-
ology”, Integration, the VLSI Journal, vol. 52, pp. 23–33,
Jan. 2016.

5


	Introduction
	Related Work
	Algorithm
	Implementation
	CSR Mesh
	FPGA Structure
	HDL Design

	Experimental Results
	Conclusion and Future Work
	References

