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ABSTRACT 

Before the advent of digital computer, analytical techniques 

were used for determining idealized solutions of 

electromagnetic problems, most especially problems of simple 

geometry or design. When the size of the problem becomes 

large that the analytical technique is unable to yield solutions 

of desired accuracy, approximate solutions are sought by 

using digital computer and numerical technique. This paper 

examines various numerical techniques suitable for solving 

electromagnetic problems. It is emphasized in the paper, the 

strengths and weaknesses of these techniques in tackling a 

particular problem. Because of the significance of retarded 

potentials in formulating integral equations that are solved by 

method of moment technique, effort is also geared towards 

deriving expressions for these potentials when sources are 

constrained to the axis, surface and volume of the conducting 

body. 

General Terms 

Computation Electromagnetics, Electromagnetic Problems, 

Numerical Techniques. 
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1. INTRODUCTION 
Over the years, the accurate determination of the 

electromagnetic field that excites a scatterer or fields radiated 

by an antenna structure has been the subject of great interest 

to a number of investigators. In pre-computer days, exact and 

closed form solutions of electromagnetic problems were 

obtained by using analytic techniques after invoking certain 

assumption. Such solution exists for problems of relatively 

simple designs or configurations. However, when the problem 

becomes intractable that the analytical technique is ineffective 

for obtaining solution, attention is shifted to the use of high 

speed digital computer and numerical technique that generates 

approximate solution. Perhaps, the development of digital 

computer and introduction of several numerical techniques 

have extended the range of solution of radiation, scattering 

and waveguide modeling problems with less worry about the 

nature and type of the structure being analyzed. The art of 

utilizing digital computer and numerical technique to proffer 

solutions to intractable electromagnetic problems is referred 

to as Computational Electromagnetics (CEM).  

Numerical techniques used in CEM are categorized into 

Numerical Methods and High frequency or asymptotic 

technique [1]. Numerical Methods are subdivided into Time-

domain and low frequency domain techniques. They are 

suitable for analyzing electromagnetic structures of few 

wavelengths while High frequency Methods handle structures 

of many wavelengths.  

In today’s world, CEM has become an integral part of 

developmental process in the creation of electromagnetic 

devices like antenna, microwave ovens, attenuators, 

waveguides etc. with a lot of advantages. These advantages 

include the reduction of ample time designers spend in the 

production of these devices.  The accuracy of computational 

techniques is such that, the production process now progresses 

from initial designs to final prototype without further testing 

[2]-[3].  CEM has also enabled the designers to view on the 

personal computer, the performance characteristics of these 

devices providing useful information than ever before. In 

addition, it has contributed immensely in reducing the cost of 

production of these devices and improving their accuracies. 

Application of computational electromagnetics is not only 

restricted to the field of electromagnetics and antenna 

engineering alone, it has useful applications in other areas of 

Electrical Engineering. It is useful in Power Engineering 

systems for the design and analysis of power devices like 

generators, transformers, insulators, turbines etc. It is also an 

important technique in Micro-Computing for the design of 

small and fast micro-processors [4].  

This paper presents general description of these numerical 

techniques suitable for solving electromagnetic field 

problems. It is also considered in the paper, the strengths as 

well as the weaknesses of these techniques in handling 

electromagnetic problems. The layout of the paper is such 

that, section I focuses on the introduction to the subject while 

section II examines the time domain techniques. Section III 

discusses low frequency domain techniques while section IV 

focuses on high frequency or asymptotic techniques. Finally, 

section V summarizes the entire work. 

2. TIME DOMAIN TECHNIQUES 
The most popular time domain technique which has been used 

over time for analyzing scattering structure [5]-[7] and 

radiating structures [8]-[10] is Finite Difference Time Domain 

Technique. It was developed in 1966 by K.S. Yee [11]. The 

method provides solutions to time-dependent Maxwell’s 

equations of the form 
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where  E,H  represent electric and magnetic fields 

respectively, functions of space and time, J  is the current 

density while   is the charge density.  B,D  denote 

Magnetic and Electric flux densities respectively, and   is 

the del operator . 

Expressing eqn. (1) and (2) in rectangular coordinates, the 

following results 
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in which  x y zE ,E ,E  represent ˆ ˆx,y,  and ẑ  components of 

electric field,  x y zH ,H ,H denote ˆ ˆx,y,  and ẑ  components of 

Magnetic field while  x y zJ ,J ,J  are the ˆ ˆx,y,  and ẑ  

components of the induced current. 

Finite difference time domain technique  involves 

approximating eqns. (5a) – (5c) as well as eqns. (6a) – (6c) by 

finite difference equations which are often discretized at 

spatial and time intervals [10], where the source is initialized 

at given instant in time and which proceeds forward in time. 

The process is repeated several times until steady state is 

reached. It is of interest to note that, the essence of sampling 

at equidistant spatial and time intervals is to avoid undesirable 

phenomenon known as aliasing and to stabilize time-marching 

system [6]. The method yields desired solutions for the 

unknown electromagnetic fields without matrix inversion and 

it requires lower running time. The drawback is that, it is not 

computationally efficient when the number of unknowns is 

large, and errors arise when the matching is not properly done. 

To circumvent these ineptitudes, the Discrete Green Function 

/Finite difference Time Domain Technique (DG/FDTD), 

Integral Equation/Finite difference Time domain technique 

(IE/FDTD) and Multiresolution/FDTD are possible solutions 

[12].  

Another time domain technique that is similar to finite 

difference time domain when both techniques are adopted for 

diffusion is transmission line modeling method [13].  They are 

different in that, finite difference time domain technique is a 

two-step technique while transmission line modeling method 

is a single step technique [14].  

3. LOW FREQUENCY METHODS 
The two known low frequency methods are the Finite Element 

Method and the Method of Moments. The two methods yield 

solutions to the electromagnetic problems by converting 

equations in differential or integral forms into matrix 

equations. Each of these methods is discussed in what 

follows. 

3.1 Finite Element Method 
It is a computational technique that solves the differential 

boundary value problem of the form [15] 

L( g ) f     (7) 

in which L  is the differential operator, g is the quantity of  

interest, and f  is the known excitation source. The unknown 

quantity is approximated by finite number of unknown 

coefficients which are determined by converting eqn. (7) into 

a set of linear equations. To formulate a set of linear 

equations, Ritz variational or Galerkin technique is used. 

While finite Element Method is suitable for solving 

differential equation, Method of the Moment on the hand 

solves integral equation. Before we proceed into the 

description of how the method of moment proffers solutions 

to a given electromagnetic problem, we discuss here the 

continuity equations and the auxiliary functions known as 

electromagnetic potentials which avail us the opportunity of 

formulating the integral equation suitable for method of 

moment implementation.  

3.2 Electromagnetic Potentials and 

Continuity Equations of Different 

Material 
The integral equation that arises in electromagnetic theory and 

whose solution is sought using method of moment technique 

is most often than not formulated by the use of continuity 

equation and retarded Potentials known as Vector Magnetic 

Potential and Electric Scalar Potentials. These potentials are 

derivable from time harmonic Maxwell’s equations of the 

forms 

H J j E       (8) 

E j H       (9) 

. D       (10) 

0. B      (11) 

in which  , ,    represent permittivity, permeability and 

angular frequency, respectively while all other symbols 

assume their usual physical meanings. The Maxwell’s 

equations are complemented by constitutive relations of the 

forms represented by 

D E      (12a) 

1B
H A

 
      (12b) 

in which A  is the Magnetic Vector Potential. 

Substitution of eqn. (12b) in eqn. (9), yields the following 

expression in the form represented by 

E j A       (13) 

where   in eqn. (13) is the Electric Scalar potential. 
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The use of eqn. (13) in eqn. (8) and invoking Lorentz 

expression of the form . A j      leads to vector 

wave equation expressed by 

2 2A k A J       (14) 

where   2  represents Laplacian while k  stands for 

propagation constant.  

Analytic solution of eqn. (14) provides us with an expression 

for Magnetic Vector Potential in compact form which admits 

an expression of the form 

 
4

v'

A J exp jkR R dv'



    (15) 

in which v'  is the volume occupied by the source element 

dv' , R  is the distance from the source point to the 

observation point while   exp jkR R is the green’s function. 

Similarly, the expression for the Electric Scalar Potential   is 

obtained from scalar wave equation of the form 

2 2k          (16) 

which admits representation of the form   

 
1

4
v'

exp jkR R dv' 


 
 

 (17) 

It is of important to stress that, eqns. (15) and (17) are 

expressions for the Magnetic and Electric scalar potentials of 

conducting body dv'   whose current and charge densities 

 J ,    are constrained within the volume v' . However, if 

current and charges are assumed to flow along the surface of 

the body, the Magnetic Vector Potential and Electric Scalar 

Potential assume forms represented by 

 
4

s

s'

A J exp jkR R ds'



    (18) 
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in which  s sJ ,   represent surface current and charge 

densities, respectively and s'  is the surface region occupied 

by the conducting body ds' .  

When the charge and current sources are restricted to the axes 

of a thin conducting body whose radius is much smaller than 

the wavelength and length, the Magnetic Vector Potential and 

Electric Scalar Potential admit representations of the forms 

     
4

k'
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ˆA u I k' exp jkR R dk'



   (20) 
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where  k'û  is the unit vector tangential to the axis of the body, 

 I k'  represents filamentary current,  k'  is the 

filamentary charge and dk'  stands for filamentary source 

element. 

The current and charge sources constrained within the 

volume, surface and axis of a conducting body are related by 

the continuity equations of the forms 

.J j       (22) 

s s.J j       (23) 

 
 

dI k'
j k'

dk
     (24) 

where equations (22) and (23) relate charge and current 

sources restricted to the volume and surface of the body while 

eqn. (24) expresses the relationship between current and 

charges that are limited to the axis of the body.  

It is important to emphasize that, those expressions of 

Magnetic Vector Potentials, Electric Scalar Potentials, and 

continuity equations are used to formulate the fields produced 

by sources distributed throughout the volume, surface and line 

of a conducting body in form of integral equations which are 

solved by the Method of Moment.  

3.3 Method of Moments 
Harrington in 1968 published the first work on method of 

moment analysis of thin wire antenna [16] and his book [17] 

on the subject is highly referenced in the literature. The 

method provides an approximate solution to the boundary 

value problem of the form 

 inE L I    (25) 

where inE  is the incident field (known excitation source), L is 

the integral operator and I is the unknown current distribution. 

The current of interest is approximated by linear combination 

of known basis function and unknown current coefficient 

whose solution is facilitated by the network circuit parameters 

of the form 

     
1

I Z V


    (26) 

in which  Z  is the impedance matrix obtained by the inner 

product of weighting function and integral operator on known 

basis function which describes the expected characteristics  of 

unknown quantity,  
1

Z


 is the inverse of impedance matrix. 

 V  is the known voltage matrix whose entries represent the 

excitation of the antenna caused by the impressed field. For 

the sake of computation, the excitation voltage is usually 

modeled by delta gap model or magnetic frill source. 

 Once the inverse of the impedance matrix is determined, the 

solution of the current distribution becomes easily available. 

The impedance matrix can be evaluated either by using 

Galerkin’s technique or point matching technique. Galerkin’s 

technique involves the use of similar basis and weighting 

functions while point matching technique yields solution to 

the current distribution by using Dirac delta function as the 

weighting function. Basis functions used in MoM solution are 

pulse function, triangular function, and piecewise sinusoidal 

function, otherwise called subdomain functions and entire 

domain functions which include Fourier series function, 

polynomial function. The use of pulse function leads to step 

approximation, while when triangular function is used, 

piecewise linear approximation is obtained. Galerkin’s 

technique involves solving two integrations while Point 
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matching technique yields solutions to the unknown current 

by evaluating one integral. Consequently, Point matching 

technique is computationally faster than Galerkin’s technique.   

Method of moments has been applied for treating radiation 

problems concerning wire antennas [18]-[20] and scatterers 

[21]. It involves matrix inversion and as such it requires great 

amount of running time. Its inability to analyze larger 

structure of many wavelengths is also the disadvantage of this 

method.  

Needless to say, buoyed by the theory of method of moments 

technique, quite a number of commercial software tools have 

been developed and introduced into the market for modeling 

electromagnetic behaviour of wire or aperture type antennas. 

These software packages include Numerical Electromagnetic 

Code (NEC) designed by Gerald Burke and Andrew Poggi at 

Lawrence Livermore National Laboratory, United States of 

America  as well Mini-Numerical Electromagnetic code 

(MINIEC) that was developed by Naval Ocean System 

Center, using Basic programming language. Several forms of 

NEC exist in the market which include NEC-2, NEC-3, NEC-

4, and EZNEC. 

Software tool that was also developed based on method of 

moment solution of integral equation is Feko suite. It is a 

simulation package designed for analyzing radiation and non-

radiation problems of complex geometries. It is also useful for 

Electromagnetic Compatibility (EMC) analysis and for 

examining the radiation effects of wire cables. 

4. HIGH FREQUENCY METHODS 
Numerical methods discussed in the foregoing sections yields 

solutions of poor convergence when they are utilized for 

analyzing electrically large structures.  High frequency 

methods are approximate techniques that can handle such 

problems and produce solutions of desired accuracy. The 

techniques include the Geometrical Theory of Diffraction, 

Uniform Theory of Diffraction, and Geometrical Optics. They 

have been applied to solve problems concerning 

electromagnetic radiation from horn, reflector antennas, 

antenna on aircraft as well as open ended wave guide 

problems. Because of the inability of Geometrical Optics to 

determine the diffracted fields, there came the introduction of 

Geometrical theory of diffraction which not only facilitates 

the determination of primary fields but also the diffracted 

fields. The method proffers solutions to electromagnetic 

problems as superposition of primary fields (reflected and 

incident fields) and diffracted fields [22].  An upgrade on the 

Geometrical theory of diffraction technique is the Uniform 

theory of diffraction which can also yield total fields of 

electromagnetic problems. 

5. CONCLUDING REMARK 
It is presented in this paper an overview of numerical 

techniques that can be used to obtain approximate solutions of 

electromagnetic problems. These techniques include time 

domain technique which includes the finite difference time 

domain technique, suitable for solving time dependent 

Maxwell’s equations as well as low frequency techniques 

such as method of moments, finite element method that 

handle boundary value problems in integral and differential 

forms. The inability of aforesaid numerical techniques to yield 

accurate solutions for problems of complex geometry or 

design brings to the fore the use of high frequency methods 

which produce solutions of higher accuracy and convergence 

for radiation problems as superposition of primary and 

secondary fields. A number of hybrid methods are also 

highlighted in the paper which overcomes the weaknesses 

associated with the numerical techniques.   
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