Communications on Applied Electronics |
Foundation of Computer Science (FCS), NY, USA |
Volume 4 - Number 8 |
Year of Publication: 2016 |
Authors: Manisha Narang, Parveen Singla, K.K. Paliwal |
10.5120/cae2016652158 |
Manisha Narang, Parveen Singla, K.K. Paliwal . Effect of Swastika Slot in Square Fractal Antenna. Communications on Applied Electronics. 4, 8 ( April 2016), 46-49. DOI=10.5120/cae2016652158
In the modern wireless communication systems, antennas of multiple bands, smaller size and wider bandwidth are high in demands to meet the requirement of multiple applications. This has initiated the research in new antenna fields; fractal antenna theory is one among them. Its unique properties such as self-similarity and space filling lead to multiband and size reduction characteristics. Due to smaller size and multiband characteristics fractal antenna has drawn the attention of researchers. Fractal antennas have more electrical length, improved SWR and impedance in a reduced physical area. The aim of this work is to design an antenna of square shape with swastika slot for multiband characteristics and efficient gain. The proposed fractal antenna has the dimensions of 22mm x 22mm. The antenna is fabricated on FR4epoxy substrate with dielectric constant ((r) =4.4 and thickness 1.5676mm, which is easily available in market and cheap, thus making antenna cost effective. The structure has been designed using four swastika shapes in between two square rings on two sides. In this antenna only single iteration with the scaling factor 0.5 has been done to see the effect of iteration on the geometry. The designing and simulation of the antenna has been done using Ansoft HFSS software. The designed antenna resonates at seven different frequencies 4.9GHz, 5.8GHz, 8GHz, 13.8GHz, 22.3GHz, 26GHz and 27.6GHz. The Gains at these frequencies are 5.8099dBi, 1.6628dBi, -2.0782dBi, 3.6563dBi, 4.7219dBi, 5.2740dBi and 7.0985dBi respectively. This antenna can be used in different C and Ku band applications such as satellite and long distance telecommunication.