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ABSTRACT 

Clustering has been widely used in pattern recognition, image 

processing, and data analysis. It aims to organize a collection 

of data items into clusters, such that items within a cluster are 

more similar to each other than they are in other clusters. The 

Fuzzy Possibilistic C-Means (FPCM) is one of the most 

popular clustering methods based on minimization of a 

criterion function. So the implementation of this algorithm 

requires a priori selection of some parameters: the fuzzy and 

the typical exponent, initialization of cluster centers. But the 

definition of these parameters at the moment is fixed in 

advanced and the initialization of centers is random; so the 

algorithm can give results not consistent. The determination 

of an optimal value for these parameters and the cluster 

centers at the beginning are problematic and remains an open 

problem. New procedures for choice of the optimal values of 

parameters and for initialization of centers were developed.  

Numerical results using data sets are used to illustrate the 

simplicity and effectiveness of the proposed procedures.  

General Terms 

Pattern Recognition, Clustering, Algorithms et. al. 

Keywords 

Fuzzy c-means, Possibilistic c-means, Fuzzy possibilistic c-
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1. INTRODUCTION 
Cluster analysis is a technique used for classifying data, i.e. 

for dividing a given data set into a set of classes or clusters. 

The goal is to divide the data set in such a way that two cases 

from the same cluster are as similar as possible and two cases 

from different clusters are as dissimilar as possible [1, 2]. The 

conventional clustering methods consider each point of the 

data set to match exactly one cluster. Since 1965, Zadeh has 

proposed fuzzy sets in order to come closer to the physical 

world [3]. Zadeh introduced the idea of partial memberships 

described by membership functions. Fuzzy sets could allow 

membership functions to all clusters in a data set so it was 

very suitable for cluster analysis. In 1973, Bezdek submitted a 

doctoral thesis on fuzzy math for classification [4] which is 

necessary conditions for the minimization of the general 

criterion that defines the family of clustering algorithms 

known as the fuzzy c-means (FCM) [5]. The FCM used the 

probabilistic constraint that the memberships of a data point 

across classes summed to one. While this was useful in 

creating partitions, the memberships resulting from FCM and 

its derivatives, however, don‟t always generally correspond to 

the intuitive concept of degree of belongingness or 

compatibility. Moreover, the FCM was sensitive to noise. To 

mitigate such an effect, Krishnapuram and Keller (1993) 

throw away the constraint of memberships in FCM and 

proposed the possibilistic c-means (PCM) algorithm [6]. The 

advantages of PCM were that it overcomes the need to specify 

the number of clusters and were highly robust in a noisy 

environment. However, a few weaknesses remained in the 

PCM, i.e. it highly depended on a good initialization and had 

the undesirable tendency to produce coincident clusters.  Pal 

et al. deduced that to classify a data point, cluster centroid had 

to be very close to the data point; it is the role of membership. 

Moreover, for estimating the centroids, the typicality was used 

for alleviating the undesirable effect of outliers. So Pal 

defined a clustering algorithm called fuzzy possibilistic c-

means (FPCM) that combines the characteristics of both fuzzy 

and possibilistic c-means [7]. Although FPCM is much less 

prone to the problems of both FCM and PCM just described, 

the possibility values are very small when the size of the data 

set increases. 

One can regard the different variants of fuzzy clustering 

algorithms as an iterative process involving successive 

computations of the prototypes and the partition matrix. The 

values of the parameters are set up in advance. They consist of 

the following items: the number of clusters c, the distance 

function, the fuzzification factor or the fuzzy exponent (m), 

the typical exponent (). The algorithms can give erroneous 

results, due to the choice of parameters. Also different 

algorithms use a random initialization, which can deviate 

results. To eliminate this, one will define an algorithm 

initialization for them. 

The remainder of this paper is organized as follows. In section 

2, fuzzy clustering methods are presented; some drawbacks of 

them are also mentioned. In Section 3, the initialization of 

cluster centers is discussed. The problem of fuzzy and the 

typical exponents is presented; new procedure for choice an 

optimal fuzzy and typical exponents is mentioned in Section 

4. The proposed approach named Improved Fuzzy 

Possibilistic C-Means (IFPCM) can solve the mentioned 

drawbacks, and obtain better quality clustering results. In 

Section 6, we present several examples to assess the 

performance of proposed approach. The comparisons are 

made between FCM, FPCM and IFPCM. Finally, conclusions 

are made in Section 7.  

2. FUZZY CLUSTERING METHODS 

2.1 Fuzzy c-means clustering 
The fuzzy c-means (FCM) can be seen as the fuzzified version 

of the k-means algorithm [8]. Ruspini first proposed fuzzy c-

partitions as a fuzzy approach to clustering. Later, the fuzzy c-

means (FCM) algorithm with a weighting exponent m =  2 
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proposed by Dunn, and then generalized by Bezdek with 

m >  1 became popular [9]. The FCM used the probabilistic 

constraint that the memberships of a data point across classes 

summed to one. While this was useful in creating partitions, 

the memberships resulting from FCM and its derivatives, 

however, do not always generally correspond to the intuitive 

concept of degree of belongingness or compatibility. The 

FCM algorithm is an iterative algorithm clustering that 

produces an optimal c partitions by minimizing the weights 

within group sum of squared error objective function JFCM : 

JFCM  U, V =   μij
m d2 xj , vi 

n

j=1

c

i=1

  (1) 

With 1 < 𝑚 < +∞   

Where X =  {x1 , x2  ,⋯ , xn }  is the set of  n unlabeled feature 

vectors in Rp , p is the number of data items, c is the number of 

clusters with 2  c  n − 1.  V =  {v1, v2, . . . , vc} Rc×p is the 

c centers or prototypes of the clusters, vi is the p-dimension 

center of the cluster i, and d2 xj , vi  is a distance measure 

between an object xj  and a cluster centre vi. U =   μij    

represents a fuzzy partition matrix with uij  =  ui  (xj) is the 

degree of membership of xj  in the ith cluster; xj  is the jth of p-

dimensional measured data. With the following constraints (2) 

and (3):  

 μij = 1, ∀ j ∈

c

i=1

  1,⋯ , n  (2) 

 μij  ≤ n, ∀ i ∈   1,⋯ , c  

n

j=1

 (3) 

The parameter m is a fuzzy exponent, on each fuzzy 

membership and determines the amount of fuzziness of the 

resulting classification; it is a fixed number greater than one. 

The stationary points of the objective function JFCM  can be 

found by adjoining the constraint (2). We minimized under 

the constraint of U. Specifically, taking of JFCM  with respect to 

ij   and vi  and zeroing then respectively, two necessary but 

not sufficient conditions for JFCM  to be at its local extrema 

will be as the following:       

μij =     
d2 xj , vi 

d2 xj , vk 
 

2
m−1

c

k=1

 

−1

, 1 ≤ i ≤ c, 1 ≤ j ≤ n   (4) 

vi =  
 μik

m xk
n
k=1

 μik
mn

k=1

, 1 ≤ i ≤ c (5) 

Although FCM is a very useful clustering method, its 

memberships do not always correspond well to the degree of 
belonging of the data, and may be inaccurate in a noisy 

environment, because the real data unavoidably involves some 

noises. 

2.2 Possibilistic c-means clustering 
Krishnapuram and Keller proposed a possibilistic approach of 

c-means called possibilistic c-means, or PCM [6]. Their 

approach is expected to lead to better performance in the 

presence of noise. This method permits to obtain clusters that 

correspond more closely to the intuitive concept of typicality 

or compatibility, and this by the discovery of the fuzzy 

partitions that do not satisfy the fuzzy constraint. 

Krishnapuram and Keller relaxed the constrained condition 

(2) of the fuzzy c-partition to obtain a possibilistic type of 

membership function and proposed PCM for unsupervised 

clustering. The component generated by the PCM corresponds 

to a dense region in the data set; each cluster is independent to 

other clusters. The objective function of the PCM can be 

formulated as follows: 

JPCM  U, V, X =    μij
m d2 xj , vi 

n

j=1

c

i=1

+  i  (1 −

n

j=1

c

i=1

μij )m  

(6) 

Where i =  
 μ ij

m d2 x j ,v i 
n
j=1

 μ ij
mn

j=1

 (7) 


i
 is the vector of parameters that determine the "zone of 

influence" of the clusters, it is a scale parameter at the ith 

cluster. The parameter is evaluated for each cluster separately; 

it determines the distance at which the membership degree 

equals 0.5. Using (7), 
i
 is proportional to the average fuzzy 

intracluster distance of cluster  vi. 

The new membership update equation is: 

μij =  
1

1 −  
d2 xj , vi 

i
 

1
m−1

 
(8) 

is the possibilistic typicality value of training sample xj  

belonging to the cluster i. m ∈  [1, +∞] is a weighting factor 

called the possibilistic parameter or typical exponent. 

So PCM algorithm, as advocated drops the requirement that 

the sum of membership grades must be equal to 1, and the 

results are acceptable in the case of noisy data. But the second 

algorithm allows data points to behave almost independently 

of the other data in X; also it is very sensitive to initialization, 

and it has coincident clusters, because the columns and rows 

of the typicality matrix are independent from the other 

clusters. 

2.3 Fuzzy possibilistic c-means clustering 
The fuzzy possibilistic c-means (FPCM) can be seen as the 

typical version of the fuzzy c-means (FCM) algorithm. It is a 

clustering method which allows one piece of a data to belong 

to two or more clusters. This algorithm is an iterative 

clustering technique that produces optimal c 
partitions by minimizing an error objective function: 

JFPCM (U, T, V) =     μij
m + tij


  

n

j=1

d2 xj , vi 

c

i=1

 (9) 

With 1 < 𝑚 < +∞ and 1 <  < +∞  

U =   μij   represents a fuzzy partition matrix with ij  =

 i  (xj) is the degree of membership of xj  in the ith cluster; xj  

is the jth of p-dimensional measured data. T =   tij   

represents a typical partition matrix with tij  =  ti  (xj)  is the 
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degree of typicalities of xj  in the ith cluster alone. With the 

following constraints (17) and (18): 

 μij = 1, ∀ j ∈

c

i=1

  1,⋯ , n  (10) 

 tij = 1,∀ i ∈

n

j=1

  1,⋯ , c  (11) 

FPCM generates memberships and possibilities at the same 

time, together with the usual point prototypes or cluster 

centers for each cluster.  

A solution of the objective function can be obtained via an 

iterative process where the degrees of membership, typicality 

and the cluster centers are update via: 

μij =     
d2 xj , vi 

d2 xj , vk 
 

2
m−1

c

k=1

 

−1

, 1 ≤ i ≤ c, 1 ≤ j ≤ n   (12) 

tij =     
d2 xj , vi 

d2 xj , vk 
 

2
−1

n

k=1

 

−1

, 1 ≤ i ≤ c, 1 ≤ j ≤ n   (13) 

vi =  
  μik

m + tik


  xk
n
k=1

  μik
m +  t

ik


  n
k=1

, 1 ≤ i ≤ c (14) 

The above equations show that membership μij  is the same as 

FCM, but resulted values may be different and it is affected 

by all c cluster centers, while possibility tij  is affected only by 

the i-th cluster center vi. 
The principle of the algorithm is as follows: 

S1: 

 -- Given the data set X = {x1, x2,... xn} Rp. 

-- Choose the number of clusters 1 < c < n. 

-- Choose the fuzzy exponent exponent m > 1. 

-- Choose the typical exponent exponent  > 1. 

-- Choose the iteration limit Tmax. 

-- Choose the termination tolerance  > 0. 

-- Pick Norm  x A . 

-- Initialize the cluster centers V(0) randomly. 

For t = 1, 2, …, Tmax 

S2: Compute Ut = {ij}, using the formula (12).  

S3: Compute Tt = {tij}, using the formula (13).  

S4: Update the centers vectors Vt = [vi], using the formula 
(14). 

S4: Compute Et =  Vt − Vt−1  , if (Et ≤ or t ≥ Tmax), Stop; 
Else t = t + 1 . 

End. 

2.4 Remarks 
The clustering reduces to consolidate the examples of the 

most natural way possible. This desire to classify naturally is 

of course ambiguous and often formalized by the objective to 

define groups of objects such as the distance between objects 

in the same class, which is minimized and the distance 

between objects of different classes which is maximized. This 

vision of clustering therefore is compelled to have a defined 

distance to the descriptive language of objects. It is in the case 

where the feature space objects is a digital vector space in 

which each dimension corresponds to a separate attribute. 

Each object is described by a vector of attributes with real 

values. The c-means algorithm and its variants are frequently 

used in the literature of clustering, this algorithm performs the 

grouping by minimizing intragroup variance. The use of c-

means in several areas, does not neglect the fact that it has 

several disadvantages: The enormous execution time due to its 

iterative nature.  The fuzzification and typical parameters are 

fixed in advance m and ; who possess in most cases the 

value 2. This value has no mathematical or empirical 

interpretation. The optimal number of classes c giving the best 

description of data structure is defined.  
3. INITIALIZATION OF CLUSTER 

CENTERS 

3.1 Background 
The problem of classification by FPCM or other variant is 

expressed as a minimization of a functional, under certain 

constraints. The underlying algorithms don‟t ensure the 

optimality of the solution, because a local minimum can be 

found that stops the iterations. The initialization step 

conditioning the research of a minimum is therefore 

fundamental. Many strategies have been proposed in the 

literature, the simplest is to ask an expert to determine interest 

regions representing the centers of classes; the algorithm 

converges to an acceptable solution, but the unsupervised 

aspect is lost. Pena et al. [10] have compared four methods to 

initialize the partition matrix U. These four methods are: 

method completely random, the Forgy approach [8], 

MacQueen approch and Kaufman approch [11]. Pena et al. 

[10] assert that the best initialization scheme in terms of 

robustness and quality of partition is the one proposed by 

Kaufman. These propose to select iteratively the cluster 

centers until c vectors are chosen. The first vector selected is 

the closest to the gravity center of the set of vectors. The next 

center is selected by the heuristic rule of choosing a promised 

element to have around him a maximum of vectors not yet 

selected. Using an unsupervised initialization has however the 

disadvantage of not necessarily converge to a correct solution. 

Thus, Velthuizen et al. [12] bring disappointing recognition 
rate results of pathological brain tissue (tumor) by FCM. The 

result depends in large part on the initialization of the 

algorithm chosen. According to the work of Chritian Borgelt 

[1] in his thesis, the initialization of cluster centers for better 

classification is done in three ways. First, initialization 

methods independent of the data: These are statistical methods 

that make random initialization of the points from a 

probability distribution. The choice of the probability 

distribution depends on the information data. However, the 

uniform distribution is the most used. The advantage of its 

methods is its simplicity because it is unnecessary to perform 

calculations by the computer, but its disadvantage is that the 

initial positions of the points may be over far or noise from 

the data. After, initialization methods dependent data 
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(simple): the first choice center is done directly by selecting 

data points, or indirectly by the use of average data points. 

Then the other centers were selected based on the first center, 

the method most used in this case is Maxmindist (MAXimize 

MINImal DISTance). Finally, one has sophisticated 

initialization methods; these initialization methods are 

methods of classification, so he is talking about mixed 

classification that is to say a classifier to initialize and then 

applying our approach. So to initialize FCM, one uses the 

results of HCM (Hard C-Means); also initialize PCM, FPCM, 

FPCM; one uses the results of FCM. David Arthur and Sergei 

Vassilvitskii [13] proposed an approximation algorithm 

named k-means++ that select the initial values for the K-

means algorithm. k-means++ algorithm is the following: 

1. Choose randomly a center class from points of 

data set. 

2. For each point x, calculate the distance between x 

and the nearest center. 

3. Choose a new center from data set vi  =  x   ∈ X, 

by computing a weighted probability 

D x  2

 D x x∈X
2 (15) 

4. Repeat steps 2 and 3, until k centers are chosen. 

3.2 Improved K-means++ 
The most recent and efficient algorithm for initialization is k-

means++. This algorithm solved the problem of random 

initialization of cluster centers. But step 1 of the algorithm is a 

choice of the first center, which is done by random manner, or 

this choice can be a noise or overlap point in the data set, 

which can give incorrect results. Yet our objective in this 

thesis is to eliminate all random treatment. We will present a 

modified version of k-means++ by using an efficient method 

for selecting the first center. This method is based on the 

density of points. A density for each point is calculated as 

follows: 

PD i =  exp  − xi − xj 
2
 

n

j=1

   (16) 

After, one chooses the point which has the largest value of PD 

(point density) as the center of class. So we have the 

following function:  

Function initialize_center(X: Data set)→v1  

Begin 

   For i =1 to n Do 

      Compute PD(i) by Eq(16) 

v1← indexmax(PD) 

End. 

The improved K-Means++ algorithm is the following: 

1. v1← initialize_center(X) 

2. For each point x, calculate the distance between x and the 

nearest center 

3. Choose a new center from data set, by computing a 

weighted probability 

4. Repeat steps 2 and 3, until k centers are chosen. 

3.3  Some results 
The proposed initialization algorithm gave good results for 

synthetic base that they are presented from the examples 

studied. 

3.1.1 Example 1 
In the first experiment, one uses a three-cluster data set 

without an outlier shown in Figure 1. To demonstrate the 

quality of classification of FPCM in relation to the random 

initialization. The clustering results of the algorithm are 

shown in Figure. 1(a)~1(b) respectively, where the points 

from the clustering algorithm are with symbols “o” and 

clusters centers are with symbols “*”.  

The image in question is composed of three well separated 

classes, the algorithm with or without using K-means++ 

succeeded in finding the correct centers. 

It can be concluded that the random initialization does not 

have a major impact if the points are well separated. But 

another problem that can be posed is the exact number of 

classes.  

3.1.2 Example 2 
In the second experiment, one uses a two-cluster data set with 

outlier shown in Figure.2.  

The image is composed of two symmetrical point‟s clouds 

which are added noise point (top image). The algorithm with 

K-means++ seems almost not influenced by the intruder and 

therefore gives almost correct centers and the other case gives 

remote centers of true clusters. 

3.1.3 Example 3 
The image is composed of three classes, two of them are 

overlapped which gives the impression that it takes two 

classes instead of three (Figure 3). The figure shows that the 

algorithm isn‟t influenced by the random initialization. 

4. FUZZY AND TYPICAL 

PARAMETERS 

4.1 Background 
The parameter m is the exponent for each fuzzy membership, 

which determines the degree of fuzziness, 1 <  𝑚 <  1 . 

Bezdek [5] suggested that for the FCM clustering algorithm, 

m should be in the range 1 to 30, with the ranger 1.5 to 3  

giving good results. The authors noted no strong theoretical or 

empirical evidence for these choices. They also gave an 

interesting interpretation of the special case where m =  2. 
Cannon et al [15] also noted no theoretical basis for choosing 

a good value suggesting 1.1 ≤ m ≤ 5 as the most useful 

range. McBratney and Moore [16] investigated the choice of 

m for the FCM algorithm. They observed that the objective 

function value, JFCM , decreases monotonically with increasing 

number of groups c and increasing values of m, and that its 

rate of change with changing m is not constant; and they 

found a value of m approximately 2 optimal but dependent on 

the number of classes. Choe and Jordan [17] have found a 

method for determining m based on the concept of fuzzy 

decision theory. They noted that the FCM algorithm is 

insensitive to the value of m in the range 1.1 to 30 and the 

value m = 12 is optimal. Foody [18] used the value m = 1.25 

for the supervised Mahalanobis Distance fuzzy classifier 
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stating that this value was qualitatively assessed to give good 

results. Deer and Eklund [19] presented an investigation of the 

value of the fuzzy exponent using the criterion that fuzzy set 

memberships reflect class proportions in the mixed pixels of a 

remotely sensed image. Okeke and Karmieli [20] present a 

new and efficient procedure for determining a local optimal 

value for the fuzzy exponent in the implementation of fuzzy 

classification technique. In the proposed procedure, the output 

of the fuzzy classification is used to predict the original data 

set. Then the differences between the predicted data and the 

original data set, for a range of fuzzy exponent values, are 

inspected. The fuzzy exponent value that corresponds to the 

least distance between the predicted data set and the original 

data set becomes the optimal value. The method has the 

benefit of providing a unified method of identifying optimal 

fuzzy exponent. 

This is achieved only with the products of classification and 

without considering the algorithm of the fuzzy classification 

itself. Thus the method is applicable to all cases (original 

fuzzy c-means algorithm and its extensions) wherever the 

value of the fuzzy exponent is required. This algorithm 

assumes that the optimal number of classes in the data set 

must have been determined. Optimal number of classes might 

be known a priori as in the case of supervised classification in 

remote sensing or determined by classification validity 

measures. Thus, assuming one has determined the optimal 

number of classes c. Krishnapuram and Keller gave some 

recommendations based on their findings and raised by 
Barni et al [21]. They said that „fuzzifier' m is different for 

both FCM and PCM. The interpretation of the fuzzy exponent 

is also different in FCM and typical exponent in PCM. In the 

former, increasing values of fuzzy exponent represent 

increased sharing of points among all clusters, whereas in the 

latter increasing values of typical exponent represent 

increased possibility of all points completely belonging to a 

given cluster. Therefore, the value m that gives satisfactory 

results can be different in the two clustering algorithms. While 

an usual value for FCM is m =  2, Krishnapuram and Keller 

state that, in case of Gaussian clusters, an appropriate choice 

for PCM would be m =  1.5. Indeed, with lower values of m, 

the membership functions used by Krishnapuram and Keller 

decrease more rapidly when the when the distance of the 

centers. It would permit to delimit territories returning to 

every center, and would avoid the different center bringing 

together. However in most general cases, it is necessary to 

choose values of m as close as possible to 1 for realist centers. 

Barra [22] in his thesis has developed a procedure for 

determination of the optimal value of the possibilistic 

exponent in a medical context (MRI image). He proved that 

every value of m included in the interval  1.5,3  gives a weak 

rate of error classification. Also the value of m is not the same 

for different images.  

To summarize, one can say that there is no method to 

optimize fuzzy and typical parameters in general; each 

problem requires a choice depending on the nature of the data. 

A value in the range  1.5,3  is generally accepted and 

Tucker (1987) suggests in his theorem take m ≥ n / (n − 2) 

(n is the number of object) to ensure convergence of the 

algorithm. 

Finally for the FPCM approach, it doesn't exist methods or 

studies that discussed the optimal values of m and . But as in 

the two previous algorithms (FCM and PCM), a value 2 is 

given for both parameters. This value is not the optimal, but it 

is used for the mathematical simplifications or by practice. 

4.2 New procedure for choice an optimal 

fuzzy and typical exponents 
Before using the FPCM algorithm, the following parameters 

must be specified: the numbers of clusters c, the fuzziness 

exponent m, and the typical exponent . As says already, one 

is going to study in this paper the exponents. 

Researchers have long studied the fuzzy parameter, and they 

found different ranges and single values for optimal fuzzy 

exponent m. All these results can be improved and may give 

other values better than previous with certain criteria. 

Fuzzification factor influences the shape of the clusters. 

Typically, its value is set to 2; it is the most popular for the 

FCM processing of any data type. By changing the values of 

m, one can make the clusters look more Boolean so that seen 

more membership grades close to 0 or 1. This happens when 

m approaches to 1. On the other hand, if m increases, then the 

resulting membership grades lead to spike-like functions. So 

value 2 would not be good enough and may be misleading. 

This has been demonstrated in the detailed empirical and 

theoretical investigation of Deer and Eklund [19], Choe and 

Jordan [17] and Okeke and Karmieli [20], pointed out that the 

appropriate fuzzy exponent would depend on the complexity 

of the data structure; or the structure of the data set is 

unknown a priori and may vary considerably from one point 

to the other within the same data. 
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Fig 1: FPCM clustering results for the three-cluster data set  

 Fig 2: FPCM clustering results for the two-cluster data set with an outlier. 

Fig 3: FPCM clustering results for the three-overlapped cluster data set with an outlier 

Therefore, since every data set has a unique data structure, the 

optimal value of m should be peculiar to each particular data 

set and should be sought from within the data structure of 

each data set. 

Different ranges and single values for optimal typical 

exponent,, used by different researchers, have been stated in 

the previous section. For these ranges of values, there are still 

possibilities of making more precise choices of -value within 

 

 

(a) FPCM with random initialization (b) FPCM with K-means++ 

 

 

(a) FPCM with random initialization (b) FPCM with K-means++ 
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the range. Like the optimal fuzzy exponent, it depends on the 

complexity of the data structure. The only difference through 

typical and fuzzy exponent, is that if increasing values of 

fuzzy exponent represent increased sharing of points among 

all clusters, whereas in the latter increasing values of typical 

exponent represent increased possibility of all points 

completely belonging to a given cluster. 

The fuzzy possibilistic c-means, FPCM, is based on the fusion 

of fuzzy and the possibility concepts, so the objective function 

of this approach, is composed of two terms: 

JFPCM  U, T, V =    μij
m

n

j=1

d2 xj , vi 

c

i=1

+   tij


n

j=1

d2 xj , vi  

c

i=1

   

(17) 

The first term is the fuzzy function; the second term is the 

typical function.  So to determine the optimal values of fuzzy 

and typical exponent in FPCM, you must find the optimal 

value of fuzzy exponent in FCM and optimal value in PCM. 

To have an optimal value of fuzzy exponent m in FPCM; you 

must apply FCM algorithm, and take the products of the 

classification process on X to be the  UFCM  and VFCM .  Also to 

have an optimal value of Typical exponent  in FPCM; you 

must apply PCM algorithm, and take the products of the 

classification process on X to be the  UPCM  and VPCM . 

In order to reconstruct or predict the original data set from the 

outputs of the FCM algorithm, Okeke and Karmieli [20] 

proposed a new formula by using the idea of linear mixture 

modelling. So the formula of predict object is: 

X = V U  (18) 

Where  X  represents the (1×n) vector of predicted Data set 

values of the data set. V  represents the (1×c) vector of the 

FCM or PCM output prototypes (centers) and U  represents the 

(c×n) matrix of the FCM or PCM output degree of 

membership of each prototype to the data set values. 

The evaluation metric used by all algorithms of clustering is 

the root mean squared error (RMSE). The RMSE is calculated 

by the root of the averaging all squared errors between the 

original data (X) and the corresponding predicted values data 

(X ).   

RMSE =  
   xij − x ij 

c
i=1

n
j=1

n
  (19) 

where xij  and x ij  are the actual and predicted rating values 

data respectively; n is the number of data and c is the number 

of clusters. 

In order to assess the quality of a classifier on the validation 

data, one needs an evaluation measure to know how „good‟ it 

is. Performance index is criterion to choose a good clustering.  

Optimal clusters should minimize distance within clusters 

(intracluster or cluster compactness) and maximize distance 

between clusters (intercluster or cluster separation).  

Fukuyama and Sugeno tried to model the cluster validation by 

exploiting the compactness and the separation [23].  It 

consists of the difference of the compactness and the 

separation. The minimal value of index designates a „good‟ 

clustering in relation to others. In below equations, Jm  is a 

compactness measure, and  Km is a degree of separation 

between each cluster (vi) and the mean (v ) of cluster 

centroids. Then the performance index is formed as follows:  

Performance Index = PI = Jm − Km   (20) 

For example for FCM, Jm = JFCM  and   

Km =   μij
m d2 vi − v  

n

j=1

c

1=1

 (21) 

It is clear that for compact and well-separated clusters one 

expects small values for PI. The first term in brackets 

measures the compactness of the clusters while the second 

one measures the distances of the clusters representatives.  

When the value of PI is negative, the classification is good. 

Our approach for selecting the optimal value of fuzzy and 

typical exponents is based on the RMSE that measures the 

difference between the original data set and the reconstructed 

or predicted data set; and the PI that defines the index of 

performance of the algorithm. It must have a minimal value of 

RMSE and PI. We can combine the two coefficients [24] and 

we have a new criterion that is formed as follows: 

CTR =
PI + RMSE

 (PI2 − RMSE2)
  (22) 

The majority of the values of this index is between -1 and 1. 

And for different cases the minimal values is the better.   

The algorithm for determining the optimal value of fuzzy 

exponent is as follows:  

Procedure Optimal_fuzzy_typical_parameters  

1. Initialization:  Set m = 1.1, c and choose maximum value for 

m  

2. Apply FCM algorithm to compute the fuzzy prototypes V  and 

fuzzy membership U  

3. Reconstruct the original data set using  Eq. (18) 

Compute RMSE using Eq. (19) 

Compute PI using Eq. (20) 

Compute the criteria using Eq (22) 

Increment the m value; if m ≤ mmax go to 2 

8. Determinate the optimal value that has the minimal value of 

CTR. 

For choose the optimal value of typical exponent, we can 

apply the same algorithm and modifying the FCM by PCM.  

4.3 Some results 
To show the feasibility of the methodology proposed in this 

paper, one performs some experiments to compare the 

performances of the algorithm with some numerical data sets. 

All algorithms are implemented under the same initial values 

and stopping conditions.  

4.3.1 Example 1 
In the first experiment, one uses a two-cluster data set (X11) 

as presented in [25] shown in Figure 4. To demonstrate the 

quality of classification with the optimal values of m and  in 

relation to the other values for the algorithm in a case data set 
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without outlier. So the change of PI, RMSE or CTR, is caused 

by a big modification of  and small modification of m. 

According to our approach, one finds an optimal value for 

m =  1.6 and for  =  1.6. 

Table 1  presents the results produced by FPCM on X11 for 

different values of m and . One notes that the fuzzy 

exponent value m has great influence over the value of typical 

exponent  for classification. For different values of m, we 

have different results; but this is not true for . If one sees the 

CTR for (m = 1.4, =  1.1) and (m = 1.4, = 2), one 

notices that this coefficient has not changed for both 

situations. One can say the environment does not noise.  

Turning now to the execution time.  Table 3 presents the 

processing time, with the usual values and (m = 2, = 2) ; 

the execution time is 0.031. Contrariwise, using the 

procedure, the time greatly increases, the value is 1.025.  So 

this procedure increases the calculation and the time of 

running of the clustering; but it greatly increases the quality of 

the clustering. With evolved material resources, this execution 

time is not a problem; and one can say in terms of clustering 

quality that that our procedure gave a value for this type of 

problem. 

In the second experiment, one uses a two-cluster data set with 

outlier (X12) as presented in [25] shown in Figure 4. The 

clustering results of the algorithm are shown in Table II. In 

this case one has a change in the data set, so one must have a 

modification in the optimal values of  m  and  .  The optimal 

found are m =  2.5 and for  =  1.3.  The processing time 

presented in Table III has a large difference between the 

algorithm without and with the new procedure.  

 

Fig 4: Input features vectors 

5. PROPOSED APPROACH 
This selected method (FPCM) is an iterative algorithm 

clustering that is composed of two parts. The first part is fixed 

during the execution of the algorithm, it is an initial choices of 

some parameters: number of clusters, random initialization of 

cluster centers, maximum number of iterations, fuzzy and 

typical exponents. The second part is the treatment that 

permits to update the degrees of membership, typicality and 

the cluster centers until the convergence of the algorithm. This 

method is based on the objective function. The evolution of 

the method must feel the objective function and parameters 

that have a direct influence on results.  

We propose a new architecture of the algorithm described as 

follows: 

S1: 

 -- Given the data set X = {x1, x2,... xn} Rp. 

-- Choose the number of clusters 1 < c < n. 

-- Choose the optimal values of fuzzy ans typical 

parameters using the procedure:   

optimal_fuzzy_typical_parameters 

-- Choose the iteration limit Tmax. 

-- Choose the termination tolerance  > 0. 

-- Pick Norm  x A . 

-- Initialize the cluster centers V(0) using the Improved K-

Means++ algorithm. 

For t = 1, 2, …, Tmax 

S2: Compute Ut = {ij}, using the formula (12).  

S3: Compute Tt = {tij}, using the formula (13).  

S4: Update the centers vectors Vt = [vi], using the formula (14). 

S4: Compute Et =  Vt − Vt−1  , if (Et ≤ or t ≥ Tmax), Stop; 

Else t = t + 1 . 

End. 

The new algorithm named Improved Fuzzy Possibilistic C-means 

(IFPCM) contains: a procedure initialization of the centers which 

permits to select the first centers of classes by replacing the 

random initialization. And, a procedure for choice of optimal 

(a) Input features vectors X11 (b) Input features vectors X12 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 5 – No.10, September 2016 – www.caeaccess.org 

 

50 

fuzzy and typical exponents, which makes the optimal choice of 

parameters m and . 

We replaced the user intervention and the random by two 

iterative procedures. Results will be more effective, but the 

execution time of the method will increase. 

There are other parameters that influence the algorithm and which 

aren‟t covered in this paper; these parameters are: 

Number of clusters: FPCM algorithm requires the user to 

predefine the number of clusters (c), but it is not always possible 

to know this number in advance. Since the scores obtained using 

the c-means family algorithms depend on the choice of c, it is 

necessary to validate each result of the partitions once they are 

found. This validation is performed by a specific algorithm that 

allows assuming the appropriate value of the number c. We call 

this algorithm "validity index of the classification". It evaluates 

each class and determines the optimal or valid partition [23]. 

Termination criterion: FPCM clustering is an iterative 

algorithm that stops when the norm of the difference between V 

into two successive iterations is less than  (the termination 

parameter). This parameter describes the stability of the cluster 

centers between the iterations of algorithm. Generally 0.001 is 

taken as the  value. When  tends to 0, one has more precision 

and more computing time. 

Choice of the distance: The metric used in the algorithm, 

conditions the shape of point clouds to separate. In general, the 

distance d2 is defined as: 

 i ∈   1,⋯ , c . j ∈   1,⋯ , n  d2 xj , vi 

= (xj − vi)
TA (xj − vi)   

    

(23) 

where A is a positive definite matrix. When A is the identity 

matrix, d2 is the Euclidean distance and structure of the point 

cloud is spherical. Other choices are possible for A, can detect 

clouds of more complex form. One has already seen in previous 

chapters the types of distance used by variants of c-means. 

6. EXPERIMENTAL RESULTS 
To show the feasibility of the methodology proposed in this 

paper, one performs some experiments to compare the 

performances of the algorithm with some numerical data sets. All 

algorithms are implemented under the same initial values and 

stopping conditions. The experiments are all performed on an 

ACER computer with 3 GHz Pentium (11) processors using 

MATLAB (Mathworks, Inc. Natick, MA). 

In the experiment, we tested these methods on well-known data 

sets from the UCI machine learning repository [26]. Both FCM 

and FPCM algorithms are executed with the usual parameters 

(m =  2 and  = 2), the initialization of cluster centers  is 

performed in a random manner. 

After a classifier or a cluster model has been constructed, one 

would like to know how good it is. Quality criteria are fairly easy 

to find for classifiers, or  according to Borgelt [1] the quality of a 

clustering result is calculated while using index of performances 

or validity index that are used to determine the number of classes. 

In Table 3. One notes that these parameters have a direct 

influence on the results of the algorithm. Using the Performance 

Index named Fukuyama-Sugeno index, who supposes that the 

algorithm which has the minimal value of index is the best in 

relation to others. Our approach proves its performance despite its 

running time which is strictly greater than the time of other 

algorithms. 

7. CONCLUSION 
The fuzzy and typical exponents and initialization of cluster 

centers are required for the implementation of the fuzzy 

possibilistic c-means.  The questions of choice of optimal values 

for the parameters and good initialization have remained an open 

problem. This paper presents a new procedure to search the 

optimal fuzzy and typical exponents and another for initialization. 

These procedures increase the calculation and the time of running 

of the clustering; but this technique eliminates the arbitrarily 

choice and initialization at the beginning of the clustering 

algorithm.  Numerical results using data sets are used and 

illustrate the simplicity and effectiveness of the proposed 

procedures. A comparison of the clustering algorithm FPCM with 

different values of parameters shows that a clustering algorithm 

with optimal values of fuzzy and typical exponents and a better 

initialization will increase the cluster compactness and the 

separation between classes. Finally, a numerical examples show 

that the clustering algorithm with optimal values (m and ) gives 

more accurate clustering results than the FPCM algorithm with 

arbitrarily parameters for typical problem. The proposed method 

has the benefit of providing a unified method of identifying 

optimal fuzzy and typical exponents. This is achieved only with 

the products of classification and without considering the 

algorithm of the fuzzy possibilistic classification itself. Thus the 

method is applicable to all cases wherever the values of the 

exponents are required. This work can be integrated with the 

problem of determination of the optimal value of the number of 

classes. So we will have a procedure for initializing the 

parameters of the classification method FPCM, ie, the number of 

the classes and the values of and typical fuzzy exponents.  

Table 1. Table captions should be placed above the table 

m  PI RMSE CRT 

1,1 1,1 -73,353 0,188320 -0,99743598 

1,1 1,4 -73,317 0,188370 -0,99743404 

1,4 1,1 -75,845 0,167130 -0,99779885 

1,4 2 -75,571 0,167190 -0,99779885 

1,4 3 -73,833 0,167650 -0,99779009 

1,6 1,1 -76,348 0,166140 -0,99773191 

1,6 1,2 -76,348 0,166140 -0,99782627 

1,6 1,6 -76,341 0,166140 -0,99782627 

1,6 2 -76,157 0,166140 -0,99782607 

1,6 3 -74,612 0,166610 -0,99782083 

2 1,1 -71,673 0,168090 -0,99776947 

2 1,2 -71,674 0,168090 -0,99765751 

2 1,6 -71,670 0,168060 -0,99765754 

2 2 -71,566 0,168180 -0,99765783 

2 3 -70,260 0,169260 -0,99765276 

3 1,1 -48,784 0,206400 -0,99759384 

3 1,6 -48,783 0,206400 -0,99577802 

3 2 -48,723 0,202700 -0,99577793 

3 3 -47,401 0,204100 -0,99584837 

 

Table 2. Results produced by FPCM for different values of 

the parameters m and  for X12. 

m  PI RMSE CRT 

1,1 1,1 18,554 0,266150 1,014300 

1,1 1,4 18,944 0,266150 1,014000 

1,4 1,1 6,088 0,265930 1,043700 
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1,4 1,4 6,669 0,265860 1,039900 

1,4 2 9,781 0,265640 1,027200 

1,4 3 10,846 0,265600 1,024500 

2 1,3 -16,045 0,266520 -0,983390 

2 1,7 -14,730 0,266370 -0,981920 

2 2 -13,014 0,266190 -0,979550 

2,5 1,3 -19,657 0,266840 -0,986430 

2,5 1,5 -19,437 0,266810 -0,986270 

2,5 1,7 -18,659 0,266700 -0,985710 

2,5 2 -16,740 0,266450 -0,984080 

2,5 2,5 -14,808 0,266230 -0,982020 

3 1,1 -18,635 0,267160 -0,985660 

3 2 -15,852 0,266710 -0,983180 

3 2,5 -13,304 0,266350 -0,979980 

3 3 -12,592 0,266260 -0,978860 
 

Table 3 Performance Index generated by  FCM, FPCM, 

IFPCM for different data sets. 

DS ND NC NDI 
PI  

FCM 

PI  

FPCM 

PI 

IFPCM 

Iris 150 3 4 -44527 -46847 -50441 

breast

-

cancer

-

wisco

nsin-

cont 

683 4 9 -6299 -6402 -11512 

Wine 178 3 13 

-

107510

00 

-

113340

00 

-

162970

00 

Yeast 528 11 10 117,62 119,28 -476 

Auto 

MPG 
398 8 3 

-1,9721 

e+008 

-2,0202 

e+008 

-

2,13445 

e+005 

Balan

ce 

Scale 

625 4 3 1698,2 1711 1326 

Buta 345 7 2 81790 77319 48844 

glass 214 9 6 
-6,1097 

e+005 

-6,6859 

e+005 
-728905 

hayes 132 5 3 
-1,3298 

e+005 

-1,4136 

e+005 
-150440 

Monk

‟s 

Proble

m 

432 7 2 1006,6 1013 917 

Lettre 

Image 

16  

e+003 
16 26 57556 57457 46550 

ND : Number of data 

DS :  Data set 

NC : Number of clusters 

NDI : number of  data items 

PI FCM : Performance Index FCM 

PI FPCM : Performance Index FCM 

PI IFPCM : Performance Index FCM 
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