Communications on Applied Electronics |
Foundation of Computer Science (FCS), NY, USA |
Volume 5 - Number 3 |
Year of Publication: 2016 |
Authors: Abdoreza Kiani |
10.5120/cae2016652244 |
Abdoreza Kiani . Performance Evaluation of DWT-OFDM and DFT-OFDM in Multipath PLC Channel. Communications on Applied Electronics. 5, 3 ( Jun 2016), 1-6. DOI=10.5120/cae2016652244
Power-line communication (PLC) carries data on a conductor that is also used simultaneously for AC electric power transmission or electric power distribution to consumers. Power-line communications systems operate by adding a modulated carrier signal to the wiring system. Different types of power-line communications use different frequency bands. Since the power distribution system was originally intended for transmission of AC power at typical frequencies of 50 or 60 Hz, power wire circuits have only a limited ability to carry higher frequencies. Data rates and distance limits vary widely over many power-line communication standards. Low-frequency (about 100–200 kHz) carriers impressed on high-voltage transmission lines may carry one or two analog voice circuits, or telemetry and control circuits with an equivalent data rate of a few hundred bits per second; however, these circuits may be many miles long. Higher data rates generally imply shorter ranges; a local area network operating at millions of bits per second may only cover one floor of an office building, but eliminates the need for installation of dedicated network cabling. Reliable and high speed communication over power lines requires a robust modulation scheme, like a Discrete Wavelet Transform (DWT) based modulation technique, hence the quality of data communication over the noisy in-home power line network can be improved. This paper investigates the performance of conventional Orthogonal Frequency Division Multiplexing (OFDM) and Discrete Wavelet Transform-based OFDM (DWT-OFDM) systems in the presence of background and impulsive noise in multipath power lines as a communication channels. The time and frequency localization properties of the wavelet transform mitigates narrowband and heavy impulsive noise in the power lines which results in performance improvement. Simulation results in terms of PAPR, PSD, and Bit Error Rate (BER) show that DWT-OFDM is more robust against interference and multipath effects compared to DFT-OFDM, and increasing the length of the basis function improves BER and PAPR.