CFP last date
02 December 2024
Reseach Article

Super Vertex Graceful Graphs

by N. Murugesan, R.Uma
Communications on Applied Electronics
Foundation of Computer Science (FCS), NY, USA
Volume 6 - Number 9
Year of Publication: 2017
Authors: N. Murugesan, R.Uma
10.5120/cae2017652560

N. Murugesan, R.Uma . Super Vertex Graceful Graphs. Communications on Applied Electronics. 6, 9 ( Apr 2017), 38-42. DOI=10.5120/cae2017652560

@article{ 10.5120/cae2017652560,
author = { N. Murugesan, R.Uma },
title = { Super Vertex Graceful Graphs },
journal = { Communications on Applied Electronics },
issue_date = { Apr 2017 },
volume = { 6 },
number = { 9 },
month = { Apr },
year = { 2017 },
issn = { 2394-4714 },
pages = { 38-42 },
numpages = {9},
url = { https://www.caeaccess.org/archives/volume6/number9/721-2017652560/ },
doi = { 10.5120/cae2017652560 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-09-04T19:56:29.085679+05:30
%A N. Murugesan
%A R.Uma
%T Super Vertex Graceful Graphs
%J Communications on Applied Electronics
%@ 2394-4714
%V 6
%N 9
%P 38-42
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

For a defined graph labeling, there exists a number of bijective functions for a graph of defined order and size which leads to different graphs. In this paper, a mathematical tool is developed to find the number of super vertex graceful graphs for a defined order “p” and size “q”.

References
  1. Joseph A. Gallian, A Dynamic survey of Graph Labeling, 2008.
  2. Murugesan. N, Uma. R, A Conjecture on Amalgamation of graceful graphs with star graphs, Int.J.Contemp.Math.Sciences, Vol.7, 2012, No.39, 1909-1919.
  3. Murugesan. N, Uma.R, Super vertex gracefulness of complete bipartite graphs, International J.of Math.Sci & Engg. Appls, Vol.5, No.VI (Nov, 2011), PP 215-221.
  4. Murugesan. N, Uma. R, Graceful labeling of some graphs and their subgraphs, Asian Journal of Current Engineering and Maths1:6 Nov – Dec (2012) 367 – 370.
  5. Murugesan. N, Uma.R Fibonacci gracefulness of Pn 2 and PP ΘSQ , International J. of Math. Sci. & Engg. Appls, , Vol. 7 No. IV (July, 2013), pp. 429-437
  6. N.Murugesan, R.Uma A Study on Super Vertex Graceful Graphs International Journal of Computer Applications (0975 – 8887) Vol 95– No. 10, June 2014
  7. N.Murugesan, R.Uma Super vertex Gracefulness of Some Special Graphs IOSR Journal of Mathematics (IOSR-JM) 2319-765X. Volume 11, Issue 3 Vol. V (May - Jun. 2015), PP 07-15
  8. Harary, Graph Theory, Narosa Publishing House, 2001.
  9. A Rosa, On certain valuations of the vertices of a graph, theory Of Graphs (Internet. Sympos., Rome, 1996), Gordon and Breach, Newyork, 1967, pp. 349-355.
  10. Sin – Min – Lee, Elo Leung and Ho Kuen Ng, On Super vertex graceful unicyclic graphs, Czechoslovak mathematical Journal, 59 (134) (2009), 1- 22.
  11. Solairaju. A, Vimala. C, Sasikala. A, Edge – Odd gracefulness of PM SN, for M = 5, 6, 7, 8, International Journal of Computer applications (0975 – 8887), Volume 9- No. 12, November 2010.
Index Terms

Computer Science
Information Sciences

Keywords

Order of a graph size of a graph graceful graphs super vertex graceful graphs.