
 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 7 – No. 10, December 2017 – www.caeaccess.org 

 

21 

A Novel Channel Estimation Method for Power Line 

Communications

Mohammad Asadpour 
Department of electrical Engineering, University of Bonab 

Velayat Highway, Bonab 5551761167, East Azarbaijan, Iran 

 
 

ABSTRACT 

High speed data can be transmitted through power line 

channel based on orthogonal frequency division multiplexing 

scheme. Power line is a multipath fading and frequency 

selective channel which has been contaminated by impulsive 

noise. As a result, these deficiencies cause more bit errors and 

influence the quality of channel estimation. In this article, an 

efficient channel estimation method based on Bayesian 

learning is presented. A new kernel function as well as proper 

hyper-parameters in relevance vector machine is used to 

estimate the impulse response of power line communication 

channel. The bit error rate performance for hard and soft 

decisions is evaluated and compared. The obtained results 

confirm the robustness of our proposed method against to 

critical effects of impulsive noise and multipath as well as low 

computational complexity.   
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1. INTRODUCTION 
Power line as a high speed data transmission medium, 

namely, Power Line Communication (PLC) is ubiquitous, in 

which, there is no need new communication wiring. The 

performance of PLC systems is affected by signal distortion 

due to frequency-dependent cable losses, multipath 

propagation and noises [1], [2]. Load variations, number of 

branches and wire’s length in power networks change the 

transfer function of power line channel, randomly [3], [4]. 

Number of branches which form network topology, determine 

the number of reflections between transmitter and receiver. As 

a result, the power line networks are considered as a multipath 

propagation environment. To solve noise effects and 

multipath fading problems, multi-carrier Orthogonal 

Frequency Division Multiplexing (OFDM) as an efficient 

modulation technique is used to gain high data rate 

communications which can overcome the frequency 

selectivity of broadband power line [5], [6]. OFDM has high 

flexibility in coding, constellation and power assignment 

which can be managed per subcarrier [7]. Gunawan et al. have 

demonstrated OFDM performance in PLC systems [8]. 

Minimum Mean Square Error (MMSE) [9] and Maximum 

Likelihood (ML) [10] as traditional pilot based channel 

estimators minimize Least-Square (LS) errors. These 

techniques result to improper efficiencies where the noise is 

not Gaussian [11]. Efficient algorithms are needed to enhance 

the channel estimation performance in power line channel 

influenced by impulsive noise [12]-[15]. The robust channel 

estimation algorithms have been used in [16], [17]. In [18] an 

efficient channel estimation method by using a time-spread 

structure in OFDM has been presented. Chen et al. have 

applied a dual Gaussian interpolation approach based on 

amplitude and phase domain analysis [19]. In [20], a time 

synchronization technique for channel estimation has been 

used. Devri has employed an MLP neural network for channel 

estimation [21]. A channel estimation approach with 

impulsive noise mitigation based on compressive sensing has 

been considered for 1/2-rate coded-OFDM system [22]. An 

enhanced channel estimation method using IFFT and de-

noising has been presented in [23]. Huang has defined a 

nonlinear cost function to overcome the impulsive noise 

effects [24]. Channel estimation is used in discrete multi-tone 

communication systems in [25]. It has used relevance vector 

machine (RVM) with a Gaussian kernel function has been 

taken into consideration. In this paper, proposed RVM based 

algorithm along with convolutional coding is used to estimate 

the PLC channel. Viterbi decoding is used to decode original 

data. In first step, the ordinary RVM is improved by a new 

kernel function which has more compatible with the impulse 

response of PLC channel. Then the hyper-parameters’ 

improvement based on MMSE are done to estimate the PLC 

channel contaminated by impulsive noise in OFDM system. 

Simulation results show that the proposed algorithm 

overcomes to recently reported power line channel estimators.  

2. SYSTEM MODEL 
OFDM as a multicarrier modulation scheme splits high data 

rate streams to lower data rate ones which are transmitted 

through narrowband flat sub-channels. Indeed, OFDM 

technique changes a frequency selective channel to frequency 

flat sub-channels by splitting the effective bandwidth to 

orthogonal narrow sub-bands. ISI can also be eliminated when 

guard interval is used. The block diagram of baseband OFDM 

system is shown in Figure 1. 

 

Fig 1:  OFDM Block Diagram 

The channel estimation based on extracted pilots is necessary 

at the receiver to equalize the received data. In this article, the 

estimation of power line communication channel 

contaminated by impulsive noise along with background noise 

is taken into consideration. Signals propagate in PLC network 

including direct path between transmitter and receiver as a 

main path and other branches connected to the system. These 

branches can create the reflected signals as echoes which can 

cause a multipath distortion. The result is considered as a 
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frequency selective multipath fading model. Multipath models 

for power line channels have been proposed by Philips [26] 

and Zimmermann [27]. In this paper Zimmermann’s model 

will be used to describe PLC channel. This model involves the 

superposition of N different paths with weight gi and length di 

for each path i. Attenuation also can be modeled by the 

parameters a0 , a1 and k. Finally the multipath model for 

channel can be described by the following equation: 
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The attenuation of channel is related to first exponential 

function and the second one involves echo scenario. 

Propagation speed p  depends on the speed of light 0c and 

dielectric constant r of the insulating material of the cable 

which can be calculated as: 

0
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Unlike usual communication channels, power lines are not 

Additive White Gaussian Noise (AWGN) channels. The 

interference due to colored broadband noise, narrowband 

interference and different types of impulsive disturbance is 

rather complicated. The result interference in PLC can be 

classified into five groups as colored background noise, 

narrowband noise, synchronous or asynchronous periodic 

impulsive noise with fundamental frequency (usually 50 or 60 

Hz) and finally asynchronous a-periodic impulsive 

noise[1],[28]. It can ordinarily be assumed that the first three 

noise classes to be stationary in a few or long period of time 

as seconds, minutes and sometimes even for an hour, and may 

be supposed as background noise. The time variant 

characteristics during microseconds to milliseconds can be 

found in two last noise classes. Switching transients anywhere 

in power line network cause asynchronous impulsive 

occurrences and more errors in data transmission. The 

impulses shape is often similar to superimposed damped 

sinusoids. The time-domain representation of two examples is 

shown in Figure 2. The performance of the estimation 

methods will be degraded by inaccurate estimation of the 

impulsive noise positions and therefore the optimum channel 

estimation will be required. LS algorithm is the simplest 

popular technique to estimate the channel which is usually 

degraded by AWGN and inter carrier interference (ICI). 

Bayesian theory can be used to model the relevance vector 

machine (RVM) technique as a linear model with the 

marginal and conditional Gaussian distribution. The sparse 

distribution on weights in a Bayesian regression model using 

a suitable kernel function results to sparseness. The benefits of 

probabilistic predictions, automatic estimation of `nuisance' 

parameters and the facility to use any basis functions are the 

advantages accounted for RVM. Usually, RVM predictions 

are modeled based on a function as f(x) which can be defined 

over the input space [29]. Based on a linear combination of M 

basic kernel functions as: (x)=(1(x), 2(x), …, M(x)), f(x) 

can be obtained as follows: 
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Where w=(w1, w2, …, wM)T as a vector must be optimally 

estimated. In this method, learning the general models 

denoted by (3) is accomplished by a Bayesian probabilistic 

scheme. In this article, our predictions will be based on RVM 

model to estimate the PLC channel. A new kernel function is 

defined which plays an important role to get good results in 

channel estimation. The received complex-valued signals as 

an OFDM symbol will be used in RVM method to estimate 

the impulse response of the PLC channel in baseband model. 

Our proposed block diagram shown in Figure 3, will be used 

to estimate the multipath PLC channel based on a training 

sample of complex-valued functions. At first, an initial 

estimation of PLC channel is obtained by traditional 

estimators, such as LS technique, using pilot based OFDM 

symbol as a training data. Two parallel paths in block diagram 

use RVM model on real and imaginary parts of the received 

input data. Concurrently, optimum initial values for necessary 

parameters are calculated to learn the RVM technique as well 

as possible. At the end of estimation, two parts of estimated 

channel response are merged to form the total and more actual 

complex-valued channel impulse response. In our method, a 

pseudo-random sequence as pilots, Xp(n), (with |Xp(n)|=k ; for 

n = 0, …,N-1), is applied. k is an adjustable amplitude of 

pilots which can control the local signal to noise ratio in the 

subcarrier locations and can save the transmitted power. 

 

Fig 2:  Impulsive events in time-domain 

 

Fig 3:  Proposed block diagram 

The pilot symbols in receiver can be written as: 

p p p p
R = X H + N  (4) 

Where Rp is the N1 received pilot signal, Xp is the diagonal 

matrix of transmitted pilots, Np is additive noise including the 

AWGN and impulsive noises in all pilot locations and Hp is 

pilot positioned frequency response of the channel. The 

estimation of channel frequency response in all subcarrier 

locations both pilot and data is main objective. It can be 
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denoted by Hm , (m = 0, 1, 2,…, N-1) as the FFT of L 

unknown time samples, where L based on maximum delay 

spread is not further than the equivalent length of guard 

interval. The initial channel estimation can be achieved by 

using (4) as follows [25]: 

k

H H H

p p p p p p p p

/

p p

H = X R = X X H + X N

      = H + N

 (5) 

Where (.)H notation indicates the Hermitian-symmetric 

property. Also ‘k’ can control the signal to noise ratio in any 

pilot locations in frequency domain. If the channel is assumed 

to be noise free then pH  can give the actual frequency 

response of the channel. In practice, however, pH  includes 

the channel which are degraded by the additive noises,
/

pN . 

This is simply LS estimation and the following result can be 

obtained: 

1 1

k k

H

LS p p p
H = X R = H  (6) 

At the next step, IFFT of (5) results to the following equation 

in time domain: 

k
/

h = h + n  (7) 

Where 0 1 1[ , ,..., ]TNh h h h , is the observation vector, 

0 1[ , ,..., ,0,...,0]Th h hh  is the actual channel impulse 

response, and
0 1 1[ , ,..., ]TNn n n 

   n  denotes additive noise 

vector with variance 
 2
' . Now, RVM algorithm based on 

sparse Bayesian regression model is applied to estimate h 

from the observations, h . It sets a few regression weights to 

zero and as a consequence, the noise fitting in h  is canceled. 

As in (3), the channel can be approximated using the function 

f which is the linear combination of kernel functions as: 

( ) ( )i

i

f n w n i   (8) 

This equation is the convolution of regression weight vector 

and kernel function which can be written in matrix form as 

follows: 

 f = w   (9) 

Where ϕij=(i-j) is (i , j)th element of    kernel matrix and 

w is a column weights vector which includes  entries. In 

most researches, kernel ϕ(n) has been considered as a 

Gaussian function but in this paper a new kernel function with 

low complexity is introduced which has more correlative 

characteristics to PLC channel impulse response so that the 

best fitting is obtained. A number of various impulse 

responses used in most references based on Zimmerman 

model [27] are shown in Figure 4. It is clear that the suitable 

basic function as kernel in our proposed method is more 

compatible with triangle model. As a result, the following 

basic kernel as a shifted triangle function is proposed: 

( )
4

n A n


     (10) 

Where A is amplitude of proposed kernel and  is cyclic 

prefix size which is needed to fit as much as possible in 

learning phase. In addition to proper fitting of this kernel with 

channel impulse response, it’s complexity with respect to 

Gaussian kernel function in conventional RVM is 

significantly low. 

 

Fig 4:  Three types of channel impulse response 

Now applying the RVM method to the initial estimation of the 

channel as (7) can give the data in two classes as: 

approximately actual channel and noise which can be modeled 

as following equation. 

h = f + e = w + e  (11) 

Where f=[f0, f1,…, fυ]
T is the approximation function and 

e=[e0, e1,…, eυ]
T denotes the error vector in regression model. 

The errors are assumed independent Gaussian random 

variables, with variance σ2 and zero mean which are 

identically distributed as follows: 
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If a flexible Gaussian prior over the weights w and Bayesian 

inference is used, (12) with individual hyper-parameter for 

each weight can be written as [29], [30]: 
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The posterior over the weights is then obtained from Bayesian 

rule: 
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T
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Where B=σ2Iυ , A=diag(0, 1,…, υ) and Iυ is the  
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identity matrix. By integrating out the weights, the marginal 

likelihood for 
2

, σ is obtained: 

( ) ( )p   h h
  

      
2

| ,σ  (17) 

The result regression estimation is given by hRVM=ϕµ where  

and σ can be computed by maximizing the conditional 

probability as ( )p h 2, |σ . The maximum likelihood of 

(17) is corresponding to the maximum of ( )p h 2, |σ  

when hyper-prior is uniform assumed [29]. The maximum 

value of (17) respected to  and σ2 can be obtained as follows 

[31]: 

2

new i
i

i





  (18) 

and 

2
2 || ||
new

i

i


 




t - μ
 

(19) 

Where µi is the i’th weight of posterior mean given by (16) 

and 1i i ii    . The ii is the i’th diagonal element of 

the posterior weight covariance matrix based on current α and 

σ values. In this algorithm, the initial values of the hyper-

parameters for convergence of the learning process and proper 

performance are very important. α and σ based on MMSE 

criterion are jointly determined. This is similar to 

Expectation-Maximization (EM) algorithm [31] that proceeds 

by repeating of the following steps: 

1) Calculate the posterior weight covariance matrix,  

2) Find the posterior mean weight,  

3) Update the hyper-parameters, α and σ 

4) Calculate the impulse response of estimated channel 

as: estimatedh = μ  

3. SIMULATION RESULTS 
To evaluate the performance of the proposed method applied 

to PLC channels, computer simulations are carried out based 

on parameters in Table 1. Meanwhile, SNR and SNIR 

parameters are used in order to compare our proposed 

algorithm with the other methods as conventional RVM and 

Huang methods. These parameters are defined as follows: 

S

N

P
SNR

P
  (20) 

Where PS and PN are the power of transmitted signal and 

additive white Gaussian noise power, respectively and 

(1 ) .

S

N I

P
SNIR

p P p P


 
 (21) 

Where PI is the impulsive noise power and p is the parameter 

which can control impulsive and additive white Gaussian 

noise effects. 

In all simulations the PLC channel model is characterized 

based on parameters in Table 2 which is modeled by 

Zimmermann multipath model as (1) [27]. 

After proposing triangle model for kernel, it is demonstrated 

the effects of initial values of the hyper-parameters α and σ. 

Figure 5, shows the MSE criterion respected to the initial 

values of these parameters. It is shown that there are at least 

two local minimums and the optimum values in the steady 

state should be chosen in Figure 5, as: i = 8×10-7, σ = 0.35. 

After applying the obtained optimum values to key parameters 

in proposed method, simulation results for channel estimation 

in both time and frequency domains are shown in Figure 6, 

with 4% impulsive noise effect and SNR = 0 dB. In this 

figure, our proposed method is compared with Huang method 

along with actual impulse response of the PLC channel. As 

shown, good results are obtained respected to the Huang 

method. 

 

Fig 5: MSE respected to the hyper-parameters variation 

 

Fig 6: Impulse response curves with SNR= 0dB, impulse 

noise effect= 4% 

Table 1. Simulation Parameters 

parameter Value 

Encoder Convolutional 

Decoder Viterbi (Soft & Hard Decisions) 

Number of subcarriers 64,128, 360, 3072 

FFT size 256, 512, 4096 

Pilot spacing 4 

Size of Cyclic Prefix 64, 512 

Baseband modulation BPSK, QPSK 

Channel type PLC(AWGN + Impulsive noise) 
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Table 2. Parameters of four-path model 

Attenuation parameters 

K=

1 

a0=0 a1=7.8×10-10 s/m 

Path parameters 

i gi di/m 

1 0.64 200 

2 0.38 222.4 

3 -0.15 244.8 

4 0.05 267.5 

 

In this article in order to represent more differences between 

our proposed method and Huang method, MSE parameter is 

investigated in the presence of impulsive noise effects. For 

instance, in Figure 7, when the effect of impulsive noise is 

increased, about 4 dB improvement in MSE for 60% 

impulsive noise effect in our proposed method respected to 

Huang method is achieved. Figure 8, shows MSE comparison 

of our proposed method with Huang and improved complex 

RVM approaches, for 3072 subcarriers and 512 cyclic prefix 

size according to PLC standard P1901. 

 

Fig 7: Impulsive noise effects, BPSK, N=256, Nc=64, 

CP=64, Pilot space=4 

 

Fig 8: MSE comparison, BPSK, N=4096, Nc=3072, CP 

=512, Pilot space=4 

In order to improve the channel capacity, forward error 

correction (FEC) is needed which is done by adding some 

carefully designed redundant information to the data being 

transmitted through the channel. The process of adding this 

redundant information is known as channel coding. 

Convolutional coding is one of the two major forms of 

channel coding. There are a variety of useful convolutional 

codes and a variety of algorithms for decoding the received 

coded information sequences to recover the original data. 

Convolutional codes are usually described using two 

parameters: the code rate and the constraint length. The code 

rate, k/n, is expressed as a ratio of the number of bits into the 

convolutional encoder (k) to the number of channel symbols 

output by the convolutional encoder (n) in a given encoder 

cycle. The constraint length parameter, K, denotes the 

"length" of the convolutional encoder. Figure 9, shows a 

typical convolutional encoder diagram used in this article with 

code rate ½ , a constraint length of 7, a generator polynomial 

matrix of [171 133] . Viterbi decoding is one of the two types 

of decoding algorithms used with convolutional encoding. In 

this paper, convolutional encoder using Viterbi decoder with 

hard and soft decisions is applied to our proposed algorithm. 

Figure 10, compares the results due to proposed algorithm 

with Huang method in three conditions: un-coded, hard and 

soft decision Viterbi decoding for 128 subcarriers and CP=64. 

The convolutional encoder in these simulations has code rate 

½ and constraint length of the code 7. The results show the 

appropriate improvements of proposed method respected to 

the Huang and any un-coded methods. For example, for 

BER=10-3 in soft decision decoding, about 6dB and 2.5 dB 

SNIR improvements of our method respected to un-coded and 

Huang methods are achieved, respectively. Figure 11, shows 

another results for given parameters in figure. It is clear that 

the results related to soft decision is better than two others but 

the system complexity is certainly increased. There is trade-

off between complexity and estimation quality in our 

proposed method. 

 

Fig 9: Convolutional Encoder diagram with rate=1/2, 

Constraint length=7 

 

Fig 10: BER comparison, BPSK, N=512, Nc=128, CP =64, 

Pilot space=4 
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Fig 11: BER comparison, BPSK, N=512, Nc=256, CP =128, 

Pilot space=4 

4. CONCLUSION 
The In this article, it was proposed new kernel with optimum 

hyper-parameters in relevance vector machine method. Also 

the complex-valued analysis based on RVM was used to 

estimate the power line communication channel. This 

proposed algorithm caused a good enhancement in the 

obtained channel estimation result. It was shown that MSE 

and BER parameters of our proposed method have good 

results in any conditions. Also the increasing of impulsive 

noise effect in our proposed method was compared with 

recently reported methods as Huang and improved 

conventional RVM with Gaussian kernel function. The 

robustness of our method against to impulsive noise effects 

was completely proved. Finally, in order to improve the 

channel capacity, convolutional coding along with Viterbi 

decoding as an FEC technique was applied to our algorithm. 

The obtained BER results confirm more considerable 

improvements of proposed method respected to the others. 
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