CFP last date
28 January 2025
Reseach Article

The Global Set-Domination Number in Jump Graphs

by N. Pratap Babu Rao, Swetha N.
Communications on Applied Electronics
Foundation of Computer Science (FCS), NY, USA
Volume 7 - Number 17
Year of Publication: 2018
Authors: N. Pratap Babu Rao, Swetha N.
10.5120/cae2018652771

N. Pratap Babu Rao, Swetha N. . The Global Set-Domination Number in Jump Graphs. Communications on Applied Electronics. 7, 17 ( Jun 2018), 7-8. DOI=10.5120/cae2018652771

@article{ 10.5120/cae2018652771,
author = { N. Pratap Babu Rao, Swetha N. },
title = { The Global Set-Domination Number in Jump Graphs },
journal = { Communications on Applied Electronics },
issue_date = { Jun 2018 },
volume = { 7 },
number = { 17 },
month = { Jun },
year = { 2018 },
issn = { 2394-4714 },
pages = { 7-8 },
numpages = {9},
url = { https://www.caeaccess.org/archives/volume7/number17/817-2018652771/ },
doi = { 10.5120/cae2018652771 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-09-04T20:02:08.485671+05:30
%A N. Pratap Babu Rao
%A Swetha N.
%T The Global Set-Domination Number in Jump Graphs
%J Communications on Applied Electronics
%@ 2394-4714
%V 7
%N 17
%P 7-8
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Let J(G) be a co-connected jump graph. A set D ⊂ V(J(G)-D is a set dominating set (sd-set) if for every S ⊂ V(J(G)-D there exists a non empty set T ⊂ D such that the sub graph (S ∪ T) is connected. Further D is a global set dominating set, if D is an sd-set of both J(G) and J(G). The set domination number √s and the global set domination number √sg of J(G) are defined as expected.

References
  1. Jean Dunbar,R.C Laskar and Ted Monroe,Congr,Numer.85(1991) 67-72
  2. S.T. Hedetniemi and Renu Laskar, in Graph theory and combinatorics,ed B.Bollobas,Academic press London 1984,pp 209-218
  3. D.F. Rall, congr.Numer 80(1991)89-95
  4. E. Sampathkumar, J. Math. Phys.Sci.23(1989)377-385
  5. E. Sampathkumar and L.Pushpa Latha, J. Graph Theory 18(No.1)1994,to appear.
  6. E. Sampathkumar and H.B Walikar J. Math. Phys. Sci 13 (6) (1979), 607-613.
Index Terms

Computer Science
Information Sciences

Keywords

Set domination global set domination number