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ABSTRACT 

Partitioning the image into meaningful groups is one of the 

major task in image analysis which can be achieved using the 

unsupervised clustering algorithm. K-means algorithm is one 

of the popular unsupervised clustering algorithm. The K-

means algorithm is time-consuming and requires intensive 

computation for a large data set as the input is compared with 

all the centroids. Also, the data needs to be stored internally 

due to iterative re-assignment process. An architecture to 

enhance the speed of clustering operation using minimal 

hardware for K-means clustering without any internal storage 

is proposed and implemented using Virtex 6 FPGA. A new 

methodology is proposed to reduce the distance computation. 

The performance of the architecture is 203fps for a grayscale 

image size of 256X256 and 102fps for a grayscale image of 

size 512X512. This shows that the proposed architecture can 

be used for real time image segmentation. 

Keywords 
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1. INTRODUCTION 
Clustering is an unsupervised clustering algorithm where the 

data can be grouped together depending on the similarity. The 

data that are similar are put in the same group. One of the 

popular clustering algorithm is the K-means clustering 

algorithm [1] that is used in many fields like machine learning 

[2], data mining [3] and multimedia communication [4].  

The software implementation of K-Means algorithm was 

unable to meet the timing requirement of the systems. To 

meet the increased demand and due to its simplicity, many 

hardware architectures are developed to accelerate the 

clustering operation [5]-[15]. The hardware specifications of 

these works vary because of the different target applications.   

Filho et al. propose a software/hardware co-design technique 

for K-Means clustering [5], which is used for clustering the 

hyper spectral images. The distance calculation and class 

selection for K-Means algorithm was implemented in 

software as they are computational intensive and require more 

hardware resource. 

Maruyama [6] proposes an FPGA implémentation of  K-

Means clustering for color images where 4 pixels are 

processed in parallel. To reduce the distance computation 

from each point to the cluster centers, KD tree filtering 

algorithm is used in [7]. T.-W.Chen and S.-Y. Chien propose 

hardware architecture of K-Means clustering where 

bandwidth adaptive mechanism using 5 parallel modes for 

different vector dimensions is proposed to effectively use the 

hardware [8]. The divisive hierarchical clustering algorithm 

with K-Means clustering in proposed in [9] to handle high 

clusters. Hardware architecture which address the initial 

centroid selection and acceleration of the clustering process 

are proposed in [10] - [15] 

In the previous work [16], Online K-Means clustering was 

developed for handling vector dimension up to 8 with 

maximum of 16 clusters. The online architecture developed 

provide the clustering result in single iteration with less 

memory overhead for storing the input vectors but however, 

the clustering quality can be improvised by Forgy’s K-means 

due to iterative assignments. 

The architecture developed till now for clustering an image 

compares each pixel value with the centroid and the data is 

placed in the cluster with nearest centroid. In papers [6] and 

[7], few boundary points are selected after the first iteration in 

K-Means to reduce the computation time. In an image, each 

and every data is compared with all the cluster centroid and 

hence the computation becomes intensive as the number of 

distance calculator required is proportional to the number of 

data N. If fixed number of distance calculators are used, then 

the number of iterations to compare the data with the cluster 

centroid increases. For a gray scale image and for a 24 bit full 

color image, the intensity level will have values only from 0 

to 255. Hence the data comparison with the centroid in an 

image will have many repeated calculations as the intensity 

levels in an image is repetitive.  Hence to reduce the 

computations and to speed up the operation, the proposed 

hardware architecture computes the distance only for each 

intensity value ranging from 0 to 255. Initially, when the input 

image is read, the image pixel intensity is compared with 256 

intensity values and if equal, then corresponding intensity 

register is incremented. Hence 256 registers only are required 

to store the number of pixels having the intensity level from 0 

to 255 irrespective of the image size.  

2. K-MEANS CLUSTERING AND 

METHODOLOGY PROPOSED 
The K-means clustering is an iterative clustering algorithm 

that groups the data into K sub-groups. The number of 

subgroups K called clusters is specified prior.  

The first step in K-means clustering is to select K inputs and 

assign that as cluster center or centroids. Each input pixel is 

read and is assigned to the nearest centroid.by computing the 

distance between the input pixel and all the centroids. After 

reading all the inputs and assigning to the nearest centroid, the 

centroid is re-computed as mean of the cluster. The process is 

repeated till the centroids do not change. 

The assignment and re-assignment of the data to the nearest 

centroid needs each input data to be compared with all the K 

centroids. If the data size is large, then the computational 

complexity involved in comparing the data with all the 

centroids will be more. For an image of size NXN, all the N2 
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pixels need to be compared with K centroids. The comparison 

of the data with the nearest centroid is computed as either the 

Euclidean or Manhattan distance between the data and the 

centroid. For large data set with parallel computation facility, 

the distance calculators required to compute the distance 

between the input and the centroids will be more.  

A methodology is here proposed to reduce the computational 

complexity. In a 24 bit RGB image or an 8 bit gray scale 

image, the intensity values are in the range of 0 in 255. Hence 

in an image of size NXN, all the N2 pixels will have the 

values only from 0 to 255. These intensity values only will be 

repeated in an image. Hence instead of comparing each and 

every data with the centroids, only the 256 intensity values 

will be compared with the centroids. To understand the 

concept, consider the example image shown in Fig 1. Let the 

intensity values in an image vary in the range 0 to 3 assuming 

to be 2 bit gray scale value.  

 

Fig 1: (a) 8X8 2 bit gray scale image (b) Intensity values of 

the 8X8 image 

The image shown in Fig 1a is of size 8X8. If K-means 

algorithm is applied to an image shown Fig 1a.,  then all the 

64 pixels in an 8X8 image needs to compute the Euclidean or 

Manhattan distance between each of the centroids. Hence for 

an 8X8 image, the distance should be calculated 64 times with 

each centroid. If the image is a two bit gray scale image, then 

the image pixels can have the value only from 0 to 3 as seen 

in Fig 1b. For the given 8X8 image, the intensity value ‘0’ 

appear 39 times and hence in original K-means clustering 

algorithm, the intensity value ‘0’ computes the distance with 

the all the K centroids 39 times.  Similarly, in the given 

image, the intensity value ‘1’ appear 16 times and intensity 

value ‘3’ appear 9 times. Hence distance between intensity 

value ‘1’ and each centroid is carried out 16 times and 

distance between intensity value ‘3’ and each centroid is 

carried out 9 times. As seen, the same distance calculation is 

done (38*K) times redundantly for an intensity value black. 

Similar redundant calculations are done for other intensity 

values in an image.   

To reduce the computational efforts, the distance between 

intensity values and each centroid is computed only once. 

Also the count of the pixels having the same intensity value is 

computed which is required to determine the new centroid. 

Hence instead of comparing each pixel with the centroid, only 

intensity values of the pixel can be compared with the 

centroids. Hence in the proposed method, for an 8 bit gray 

scale image, the distance computation between 256 intensity 

values and each of centroid is carried out irrespective of the 

image size. The architecture of proposed the methodology to 

compute the K-means algorithm is described in the next 

section. 

 

3. PROPOSED ARCHITECTURE 
The proposed architecture of K-Means clustering algorithm is 

designed to work under the processing platform where the 

width of bus is 8 bits as the input is 8 bit gray scale image. 

The architecture uses a Manhattan distance calculator which 

does not require multipliers and hence the clustering operation 

can be executed faster. The division module realized for 

finding the new centroid carries out the operation in a single 

clock cycle which in turn speeds up the clustering operation. 

Also the random initialization method is used to select the 

initial centroid. The architecture can cluster the data up to 8 

groups or up to K=8. 

An overview of the proposed K-Means clustering architecture 

is illustrated in Fig 2, and the functionality of each module 

will be explained in the following subsections. 

 

Fig 2: Proposed architecture 

3.1 Input Unit 
The pixel of each image is sent serially through data-in input. 

The input pixel is compared with 256 data values from 0 to 

255 corresponding to the intensity values of an 8 bit gray 

scale image. There are 256 registers R0 to R255 each for one 

intensity value which gets incremented if the input data value 

match the corresponding intensity value. Hence R2 register 

gets incremented if the input data has an intensity value 2 and 

the other registers retain the previous value. The input unit is 

shown in Fig 3. 

As seen, the comparator output act as enable signal to the 

adder. If enabled, then the adder adds value 1 to the existing 

value of the register. The comparator is used for comparing 

the input with a value and hence the complexity of the 

comparator reduces to an 8 bit AND gate as shown in Fig. 3. 

Hence when comparing the input with pixel value ‘0’, the 

Data_in input is inverted and fed to 8 input AND gate. When 

comparing the pixel value ‘255’, Data_in input is directly fed 

to 8 input AND gate. 

Irrespective of the image size, 256 registers and comparators 

are needed. For an image of size 256X256, 65536 clock 

cycles are required for comparison of the entire image. After 

reading the entire image, registers R0 to R255 contains the 

information of the number of pixels having the intensity value 

from 0 to 255. The initial centroids are selected randomly 

from the input pixels and stored in a temporary register.  
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Fig 3: Input unit 

3.2 Nearest centroid selector 
Nearest centroid selector assigns the input pixel intensity to 

the nearest centroid. To compute the nearest centroid, there 

are fixed 256 distance calculators. The distance calculator 

compares the intensity values with the centroids. Manhattan 

distance is used for calculation of the distance which 

computes the absolute distance between the data and the 

centroid. The distance calculator that computes the distance 

between the input pixel data ‘D’ with 4 centroids C1, C2, C3 

and C4 is shown in Fig 4 

 

Fig. 4: Nearest centroid selector 

The absolute distance between the input pixel and all the 

centroids is computed in the section shown as ‘Distance 

calculation’ of Fig 4. The ‘Least distance section’ shown in 

Fig 4 selects the value of the nearest centroid depending on 

the cluster K value. 

The input pixel is subtracted with all the centroids C1, C2, C3 

and C4 .The absolute value of the difference is taken to obtain 

the distance between the input pixel and all the centroids. The 

Manhattan distance is available as output from the section 

‘Distance calculation’. The distance calculated is used as 

select input for the mux for selecting the centroid that has 

least distance with the input.  

 For K=2, the least distance selection unit selects the centroid 

called ‘Centroid 1’ that has least distance with the input pixel.   

For K=3 , the least distance selection unit selects the centroid 

called ‘Centroid 2’ that has least distance with the input pixel 

and similarly when K=4, , the least distance selection unit 

selects the centroid called ‘Centroid 3’ that has least distance 

with the input pixel. The selected centroid is stored in the 

temporary register. The single nearest centroid shown in Fig 4 

supports for clustering the data up to 4 clusters. The 

architecture supports the clustering operation up to K=8 where 

there are 8 subtractors, 8 absolute unit, 7 comparators and 8 

multiplexers.  

For each value of the input pixel from 0 to 255, the centroid 

nearer to the data is selected using 256 nearest centroid 

selectors and stored in 256 corresponding registers.  

3.3 Sum Computer 
The sum computer adds the pixel values nearer to the 

centroid. If there are four centroids, then the data points nearer 

to the centroid1 are added together and stored in a register 

called sum1. Similarly, the data points nearer to the centroid2, 

centroid3 and centroid4 are stored in sum2, sum3 and sum4 

registers. Also the Sum computer computes the total number 

of data near to centroid1 to centroid4 and stores it in the 

register count1 to count4. 

The output of each nearest centroid selector is compared with 

all the centroids. If the nearest centroid output is equal to 

centroid1, then the corresponding intensity value of a pixel 

will be multiplied by the total number of pixels having that 

intensity value in the image which is stored in register R0 to 

R255 in the input unit and is updated in the sum1 register. 

Hence sum1 register contains the sum of all the pixels nearer 

to centroid 1.The pseudo-code for finding the sum and count 

and to compute new centroid is given below 

Algorithm 1: To compute sum of data in a cluster and finding 

the new centroid 

Initialize sum=0, count=0 

for i<-0 to 255 

{ 

 if (nearest_centroid_out (i) = centroid) 

 { 

     sum= sum + (i*reg(i)) 

 count= count + reg(i) 

 } 

} 

New_centroid = sum/count 

If New_centroid = centroid 

   Done =1  

Else 

Done =0 

3.4 Divider 
The new centroid in K-means clustering is obtained by 

dividing the sum by count as seen in algorithm 1. The divider 

is designed to operate in a single clock cycle. The sum and 

count registers are designed to be 24 bit registers and hence 

the divisor and the dividend for the division operation is 24 

bits. The pseudo code for obtaining the quotient and 

remainder is given below for n bit division. 

Algorithm 2: To compute the new centroid 
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Initialize temp_divisor = concat {1 bit of value, divisor, (n-1) 

bits of value 0} 

                          temp_remainder = concat{(n-1) bits of value 

0, dividend} 

   If (dividend=0) 

 { 

     quotient= 0; 

   }  

   else 

 { 

            For i <  0 to (n-1) 

            {    

temp_result = temp_remainder - temp_divisor; 

  if(temp_result((2n-1) - i)=1)  

  quotient(n – i) = 1'b0; 

  else  

  { 

  Quotient (n – i) = 1'b1; 

  temp_remainder = temp_result; 

  } 

  temp_divisor = temp_divisor >> 1; 

                         } 

3.5  Convergence monitor and output unit 
“Convergence Monitor” module examines whether the 

quotient obtained from the divider is equal to the previous 

centroid value and returns the information to the “Control 

Unit” module. The control unit is modelled as Finite state 

machine is and it checks if the centroid is converged. If so, 

then the information is given to the output unit else the new 

iteration begins again from centroid selector. 

4. RESULTS AND DISCUSSION 
The proposed K-Means architecture is built using Verilog 

HDL and tested using I-Sim simulator and MATLAB. The 

architecture is implemented on Xilinx Virtex 6 FPGA.  

The first part in the verification is testing of the algorithm 

developed for image analysis. The gray scale images of 

various size that needs to be tested was stored in an external 

memory and one image pixel per clock cycle was sent to the 

architecture. The image after clustering was put back in an 

external memory for analyzing the clustered image. The input 

for the architecture was an 8 bit gray scale level and the 

output is the 8 bit gray scale value corresponding to the 

nearest centroid for each input pixel. Fig.5. shows the 

clustering result for various values of K 

The architecture was tested using various standard images like 

Lena, Cameraman, Baboon, Ship, peppers and house image as 

it covers the mixture of flat regions, shading and texture in an 

image.  

The second part is analyzing the hardware cost of the 

architecture. To analyze the area occupied by the proposed 

algorithm, the original K-means architecture that compares 

each data with the centroid was also designed and tested. The 

original K-means architecture built also had 256 fixed 

distance calculator to compute the distance between the input 

and the centroid. Hence only 256 pixels can be processed at a 

time. The Slice LUTs of original K-means architecture is 

more than double compared to the proposed architecture as 

seen in the Table 1. Also the hardware requirement of original 

K-means architecture increases with increase in the image 

size. Also by varying the input image size, the hardware cost 

of the proposed algorithm was tested. It is seen that the 

hardware utilization remains same as shown in Table 1 for 

varied image size. However, the initial comparison time varies 

with the image size. 
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Fig 5: Clustering results for various images 

Table 1: Comparison of hardware utilization of proposed 

work with original K-means architecture 

Logic Utilization Original K-

Means 

Architecture 

Proposed K-

Means 

Architecture 

Number of Slice Registers 6767 6813 

Number of Slice LUTs 140098 41143 

Number of fully used LUT-FF 

pairs 
4615 

2405 

Number of DSP block 236 2 

 

As a third step in hardware cost analysis, the cluster number K 

was varied in the proposed architecture and the LUTs required 

was analyzed. The Slice LUTs required as the K is varied is 

shown in Fig 6. Utilization of Slice LUTs increases almost 

linearly with the K because the hardware complexity of the 

nearest centroid calculator increases with K.  
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Fig 6: Utilization of Slice LUT with K varied 

The third step is the analysis of the timing constraint of the 

architecture built. The proposed K-means architecture operate 

on the intensity levels of a given image irrespective of the 

image size. The data moves from input unit to the output unit 

sequentially. The intermediate modules like nearest centroid 

selector, sum computer, divider, convergence check unit 

complete their operation in a single clock cycle as all the 256 

intensity levels are processed simultaneously using the 

parallel hardware structure. The output unit is designed using 

two ways. The first design of output unit is to again scan the 

input image and assign the determined nearest centroid for the 

input pixel. The second design is to store the input in the 

BRAM and compare all the pixels with the computed nearest 

centroid using parallel architecture. The second method 

require more hardware but can operate in a single clock cycle.  

The input unit requires, 65,536 clock cycles to compare the 

intensity levels of all the pixels in a 256X256 sized image, 

2,62,144 clock cycles to compare the intensity levels of all the 

pixels in a 512X512 sized image and so on. After initially 

comparing the image pixels in the input unit, rest all the units 

like nearest centroid selector, sum computer, divider, and 

convergence unit with output unit would take 1 clock cycle 

for completion. Totally, it requires 4 clock cycles for 

completion of 1 iteration. Even if the maximum number of 

iterations required is 10, then totally 40 clock cycles are 

required. To complete the clustering operation for 256X256 

image, we require 65576 clock cycle. The architecture 

operates at a speed of 26.622 MHz and hence the entire image 

can be processed in 0.0049 sec which indicate that the 

architecture can process 203 frames per second. Similarly, 

512X512 image can be processed in 0.0098 sec and can 

process 102 frames per second. This indicate that the 

proposed hardware architecture is well suited to work in the 

real time environment. 

The last part of verification is comparison of the work with 

previous literature. This proposed architecture is compared 

with work of [8]. The proposed architecture performs division 

operation in a single clock cycle and can process more 

number of image frames per second. 

 

 

 

 

Table 2: Comparison of the proposed architecture with 

related works 

Specifications T.W.Chen[8] Proposed 

architecture 

Implementation 

method 

ASIC-TSMC 

90 nm 

 Virtex 6 FPGA 

Maximum cluster 

number 

1-16 1-8 

Maximum data 

number 

220 Any image size 

Clock cycles 

required for 

division operation 

More than 10 Single clock 

cycle 

Frame rate Not specified 256X256/ 203 

fps 

Distance calculator Manhattan/Euc

lidean 

Manhattan 

 

5. CONCLUSION 
Hardware architecture of K-Means clustering algorithm is 

proposed. Majority of the time is consumed in K-means 

clustering by computing the distances between each of the K 

centroids and the image data pixel. Much of the distance 

computations are repetitive as the intensity levels in an image 

are repeated numbers within the range 0 to 255. Hence the 

hardware proposed reduces the time in distance computation 

by computing the distance between the centroids and 256 

intensity level irrespective of the image size. The proposed 

hardware utilize less space compared to original K-means 

architecture. Also for an image size of 256X256, the 

clustering operation can be computed as fast as 203 frames 

per second which indicate that the proposed hardware is well 

suited for real time applications.  
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