

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 30, August 2019 – www.caeaccess.org

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 30, August 2019 – www.caeaccess.org

5

FPGA Implementation of Forgy’s K-Means Clustering for

Real Time Image Analysis

Anuradha M. G.
ATME college of Engineering, Mysore

JSS Academy of Technical Education, Bengaluru

Basavaraj L.
ATME college of Engineering

Bannur Road, Mysore

ABSTRACT

Partitioning the image into meaningful groups is one of the

major task in image analysis which can be achieved using the

unsupervised clustering algorithm. K-means algorithm is one

of the popular unsupervised clustering algorithm. The K-

means algorithm is time-consuming and requires intensive

computation for a large data set as the input is compared with

all the centroids. Also, the data needs to be stored internally

due to iterative re-assignment process. An architecture to

enhance the speed of clustering operation using minimal

hardware for K-means clustering without any internal storage

is proposed and implemented using Virtex 6 FPGA. A new

methodology is proposed to reduce the distance computation.

The performance of the architecture is 203fps for a grayscale

image size of 256X256 and 102fps for a grayscale image of

size 512X512. This shows that the proposed architecture can

be used for real time image segmentation.

Keywords

Clustering, FPGA, Image segmentation, K-Means, Machine

learning.

1. INTRODUCTION
Clustering is an unsupervised clustering algorithm where the

data can be grouped together depending on the similarity. The

data that are similar are put in the same group. One of the

popular clustering algorithm is the K-means clustering

algorithm [1] that is used in many fields like machine learning

[2], data mining [3] and multimedia communication [4].

The software implementation of K-Means algorithm was

unable to meet the timing requirement of the systems. To

meet the increased demand and due to its simplicity, many

hardware architectures are developed to accelerate the

clustering operation [5]-[15]. The hardware specifications of

these works vary because of the different target applications.

Filho et al. propose a software/hardware co-design technique

for K-Means clustering [5], which is used for clustering the

hyper spectral images. The distance calculation and class

selection for K-Means algorithm was implemented in

software as they are computational intensive and require more

hardware resource.

Maruyama [6] proposes an FPGA implémentation of K-

Means clustering for color images where 4 pixels are

processed in parallel. To reduce the distance computation

from each point to the cluster centers, KD tree filtering

algorithm is used in [7]. T.-W.Chen and S.-Y. Chien propose

hardware architecture of K-Means clustering where

bandwidth adaptive mechanism using 5 parallel modes for

different vector dimensions is proposed to effectively use the

hardware [8]. The divisive hierarchical clustering algorithm

with K-Means clustering in proposed in [9] to handle high

clusters. Hardware architecture which address the initial

centroid selection and acceleration of the clustering process

are proposed in [10] - [15]

In the previous work [16], Online K-Means clustering was

developed for handling vector dimension up to 8 with

maximum of 16 clusters. The online architecture developed

provide the clustering result in single iteration with less

memory overhead for storing the input vectors but however,

the clustering quality can be improvised by Forgy’s K-means

due to iterative assignments.

The architecture developed till now for clustering an image

compares each pixel value with the centroid and the data is

placed in the cluster with nearest centroid. In papers [6] and

[7], few boundary points are selected after the first iteration in

K-Means to reduce the computation time. In an image, each

and every data is compared with all the cluster centroid and

hence the computation becomes intensive as the number of

distance calculator required is proportional to the number of

data N. If fixed number of distance calculators are used, then

the number of iterations to compare the data with the cluster

centroid increases. For a gray scale image and for a 24 bit full

color image, the intensity level will have values only from 0

to 255. Hence the data comparison with the centroid in an

image will have many repeated calculations as the intensity

levels in an image is repetitive. Hence to reduce the

computations and to speed up the operation, the proposed

hardware architecture computes the distance only for each

intensity value ranging from 0 to 255. Initially, when the input

image is read, the image pixel intensity is compared with 256

intensity values and if equal, then corresponding intensity

register is incremented. Hence 256 registers only are required

to store the number of pixels having the intensity level from 0

to 255 irrespective of the image size.

2. K-MEANS CLUSTERING AND

METHODOLOGY PROPOSED
The K-means clustering is an iterative clustering algorithm

that groups the data into K sub-groups. The number of

subgroups K called clusters is specified prior.

The first step in K-means clustering is to select K inputs and

assign that as cluster center or centroids. Each input pixel is

read and is assigned to the nearest centroid.by computing the

distance between the input pixel and all the centroids. After

reading all the inputs and assigning to the nearest centroid, the

centroid is re-computed as mean of the cluster. The process is

repeated till the centroids do not change.

The assignment and re-assignment of the data to the nearest

centroid needs each input data to be compared with all the K

centroids. If the data size is large, then the computational

complexity involved in comparing the data with all the

centroids will be more. For an image of size NXN, all the N2

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 30, August 2019 – www.caeaccess.org

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 30, August 2019 – www.caeaccess.org

6

pixels need to be compared with K centroids. The comparison

of the data with the nearest centroid is computed as either the

Euclidean or Manhattan distance between the data and the

centroid. For large data set with parallel computation facility,

the distance calculators required to compute the distance

between the input and the centroids will be more.

A methodology is here proposed to reduce the computational

complexity. In a 24 bit RGB image or an 8 bit gray scale

image, the intensity values are in the range of 0 in 255. Hence

in an image of size NXN, all the N2 pixels will have the

values only from 0 to 255. These intensity values only will be

repeated in an image. Hence instead of comparing each and

every data with the centroids, only the 256 intensity values

will be compared with the centroids. To understand the

concept, consider the example image shown in Fig 1. Let the

intensity values in an image vary in the range 0 to 3 assuming

to be 2 bit gray scale value.

Fig 1: (a) 8X8 2 bit gray scale image (b) Intensity values of

the 8X8 image

The image shown in Fig 1a is of size 8X8. If K-means

algorithm is applied to an image shown Fig 1a., then all the

64 pixels in an 8X8 image needs to compute the Euclidean or

Manhattan distance between each of the centroids. Hence for

an 8X8 image, the distance should be calculated 64 times with

each centroid. If the image is a two bit gray scale image, then

the image pixels can have the value only from 0 to 3 as seen

in Fig 1b. For the given 8X8 image, the intensity value ‘0’

appear 39 times and hence in original K-means clustering

algorithm, the intensity value ‘0’ computes the distance with

the all the K centroids 39 times. Similarly, in the given

image, the intensity value ‘1’ appear 16 times and intensity

value ‘3’ appear 9 times. Hence distance between intensity

value ‘1’ and each centroid is carried out 16 times and

distance between intensity value ‘3’ and each centroid is

carried out 9 times. As seen, the same distance calculation is

done (38*K) times redundantly for an intensity value black.

Similar redundant calculations are done for other intensity

values in an image.

To reduce the computational efforts, the distance between

intensity values and each centroid is computed only once.

Also the count of the pixels having the same intensity value is

computed which is required to determine the new centroid.

Hence instead of comparing each pixel with the centroid, only

intensity values of the pixel can be compared with the

centroids. Hence in the proposed method, for an 8 bit gray

scale image, the distance computation between 256 intensity

values and each of centroid is carried out irrespective of the

image size. The architecture of proposed the methodology to

compute the K-means algorithm is described in the next

section.

3. PROPOSED ARCHITECTURE
The proposed architecture of K-Means clustering algorithm is

designed to work under the processing platform where the

width of bus is 8 bits as the input is 8 bit gray scale image.

The architecture uses a Manhattan distance calculator which

does not require multipliers and hence the clustering operation

can be executed faster. The division module realized for

finding the new centroid carries out the operation in a single

clock cycle which in turn speeds up the clustering operation.

Also the random initialization method is used to select the

initial centroid. The architecture can cluster the data up to 8

groups or up to K=8.

An overview of the proposed K-Means clustering architecture

is illustrated in Fig 2, and the functionality of each module

will be explained in the following subsections.

Fig 2: Proposed architecture

3.1 Input Unit
The pixel of each image is sent serially through data-in input.

The input pixel is compared with 256 data values from 0 to

255 corresponding to the intensity values of an 8 bit gray

scale image. There are 256 registers R0 to R255 each for one

intensity value which gets incremented if the input data value

match the corresponding intensity value. Hence R2 register

gets incremented if the input data has an intensity value 2 and

the other registers retain the previous value. The input unit is

shown in Fig 3.

As seen, the comparator output act as enable signal to the

adder. If enabled, then the adder adds value 1 to the existing

value of the register. The comparator is used for comparing

the input with a value and hence the complexity of the

comparator reduces to an 8 bit AND gate as shown in Fig. 3.

Hence when comparing the input with pixel value ‘0’, the

Data_in input is inverted and fed to 8 input AND gate. When

comparing the pixel value ‘255’, Data_in input is directly fed

to 8 input AND gate.

Irrespective of the image size, 256 registers and comparators

are needed. For an image of size 256X256, 65536 clock

cycles are required for comparison of the entire image. After

reading the entire image, registers R0 to R255 contains the

information of the number of pixels having the intensity value

from 0 to 255. The initial centroids are selected randomly

from the input pixels and stored in a temporary register.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 30, August 2019 – www.caeaccess.org

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 30, August 2019 – www.caeaccess.org

7

Fig 3: Input unit

3.2 Nearest centroid selector
Nearest centroid selector assigns the input pixel intensity to

the nearest centroid. To compute the nearest centroid, there

are fixed 256 distance calculators. The distance calculator

compares the intensity values with the centroids. Manhattan

distance is used for calculation of the distance which

computes the absolute distance between the data and the

centroid. The distance calculator that computes the distance

between the input pixel data ‘D’ with 4 centroids C1, C2, C3

and C4 is shown in Fig 4

Fig. 4: Nearest centroid selector

The absolute distance between the input pixel and all the

centroids is computed in the section shown as ‘Distance

calculation’ of Fig 4. The ‘Least distance section’ shown in

Fig 4 selects the value of the nearest centroid depending on

the cluster K value.

The input pixel is subtracted with all the centroids C1, C2, C3

and C4 .The absolute value of the difference is taken to obtain

the distance between the input pixel and all the centroids. The

Manhattan distance is available as output from the section

‘Distance calculation’. The distance calculated is used as

select input for the mux for selecting the centroid that has

least distance with the input.

 For K=2, the least distance selection unit selects the centroid

called ‘Centroid 1’ that has least distance with the input pixel.

For K=3 , the least distance selection unit selects the centroid

called ‘Centroid 2’ that has least distance with the input pixel

and similarly when K=4, , the least distance selection unit

selects the centroid called ‘Centroid 3’ that has least distance

with the input pixel. The selected centroid is stored in the

temporary register. The single nearest centroid shown in Fig 4

supports for clustering the data up to 4 clusters. The

architecture supports the clustering operation up to K=8 where

there are 8 subtractors, 8 absolute unit, 7 comparators and 8

multiplexers.

For each value of the input pixel from 0 to 255, the centroid

nearer to the data is selected using 256 nearest centroid

selectors and stored in 256 corresponding registers.

3.3 Sum Computer
The sum computer adds the pixel values nearer to the

centroid. If there are four centroids, then the data points nearer

to the centroid1 are added together and stored in a register

called sum1. Similarly, the data points nearer to the centroid2,

centroid3 and centroid4 are stored in sum2, sum3 and sum4

registers. Also the Sum computer computes the total number

of data near to centroid1 to centroid4 and stores it in the

register count1 to count4.

The output of each nearest centroid selector is compared with

all the centroids. If the nearest centroid output is equal to

centroid1, then the corresponding intensity value of a pixel

will be multiplied by the total number of pixels having that

intensity value in the image which is stored in register R0 to

R255 in the input unit and is updated in the sum1 register.

Hence sum1 register contains the sum of all the pixels nearer

to centroid 1.The pseudo-code for finding the sum and count

and to compute new centroid is given below

Algorithm 1: To compute sum of data in a cluster and finding

the new centroid

Initialize sum=0, count=0

for i<-0 to 255

{

 if (nearest_centroid_out (i) = centroid)

 {

 sum= sum + (i*reg(i))

 count= count + reg(i)

 }

}

New_centroid = sum/count

If New_centroid = centroid

 Done =1

Else

Done =0

3.4 Divider
The new centroid in K-means clustering is obtained by

dividing the sum by count as seen in algorithm 1. The divider

is designed to operate in a single clock cycle. The sum and

count registers are designed to be 24 bit registers and hence

the divisor and the dividend for the division operation is 24

bits. The pseudo code for obtaining the quotient and

remainder is given below for n bit division.

Algorithm 2: To compute the new centroid

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 30, August 2019 – www.caeaccess.org

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 30, August 2019 – www.caeaccess.org

8

Initialize temp_divisor = concat {1 bit of value, divisor, (n-1)

bits of value 0}

 temp_remainder = concat{(n-1) bits of value

0, dividend}

 If (dividend=0)

 {

 quotient= 0;

 }

 else

 {

 For i < 0 to (n-1)

 {

temp_result = temp_remainder - temp_divisor;

 if(temp_result((2n-1) - i)=1)

 quotient(n – i) = 1'b0;

 else

 {

 Quotient (n – i) = 1'b1;

 temp_remainder = temp_result;

 }

 temp_divisor = temp_divisor >> 1;

 }

3.5 Convergence monitor and output unit
“Convergence Monitor” module examines whether the

quotient obtained from the divider is equal to the previous

centroid value and returns the information to the “Control

Unit” module. The control unit is modelled as Finite state

machine is and it checks if the centroid is converged. If so,

then the information is given to the output unit else the new

iteration begins again from centroid selector.

4. RESULTS AND DISCUSSION
The proposed K-Means architecture is built using Verilog

HDL and tested using I-Sim simulator and MATLAB. The

architecture is implemented on Xilinx Virtex 6 FPGA.

The first part in the verification is testing of the algorithm

developed for image analysis. The gray scale images of

various size that needs to be tested was stored in an external

memory and one image pixel per clock cycle was sent to the

architecture. The image after clustering was put back in an

external memory for analyzing the clustered image. The input

for the architecture was an 8 bit gray scale level and the

output is the 8 bit gray scale value corresponding to the

nearest centroid for each input pixel. Fig.5. shows the

clustering result for various values of K

The architecture was tested using various standard images like

Lena, Cameraman, Baboon, Ship, peppers and house image as

it covers the mixture of flat regions, shading and texture in an

image.

The second part is analyzing the hardware cost of the

architecture. To analyze the area occupied by the proposed

algorithm, the original K-means architecture that compares

each data with the centroid was also designed and tested. The

original K-means architecture built also had 256 fixed

distance calculator to compute the distance between the input

and the centroid. Hence only 256 pixels can be processed at a

time. The Slice LUTs of original K-means architecture is

more than double compared to the proposed architecture as

seen in the Table 1. Also the hardware requirement of original

K-means architecture increases with increase in the image

size. Also by varying the input image size, the hardware cost

of the proposed algorithm was tested. It is seen that the

hardware utilization remains same as shown in Table 1 for

varied image size. However, the initial comparison time varies

with the image size.

Cameraman

Original

Lena Original Baboon

Original

Ship Original

K=2

K=2

K=2

K=2

K=3

K=3

K=3

K=3

K=4
K=4

K=4

K=4

K=6

K=6

K=6

K=6

Fig 5: Clustering results for various images

Table 1: Comparison of hardware utilization of proposed

work with original K-means architecture

Logic Utilization Original K-

Means

Architecture

Proposed K-

Means

Architecture

Number of Slice Registers 6767 6813

Number of Slice LUTs 140098 41143

Number of fully used LUT-FF

pairs
4615

2405

Number of DSP block 236 2

As a third step in hardware cost analysis, the cluster number K

was varied in the proposed architecture and the LUTs required

was analyzed. The Slice LUTs required as the K is varied is

shown in Fig 6. Utilization of Slice LUTs increases almost

linearly with the K because the hardware complexity of the

nearest centroid calculator increases with K.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 30, August 2019 – www.caeaccess.org

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 30, August 2019 – www.caeaccess.org

9

Fig 6: Utilization of Slice LUT with K varied

The third step is the analysis of the timing constraint of the

architecture built. The proposed K-means architecture operate

on the intensity levels of a given image irrespective of the

image size. The data moves from input unit to the output unit

sequentially. The intermediate modules like nearest centroid

selector, sum computer, divider, convergence check unit

complete their operation in a single clock cycle as all the 256

intensity levels are processed simultaneously using the

parallel hardware structure. The output unit is designed using

two ways. The first design of output unit is to again scan the

input image and assign the determined nearest centroid for the

input pixel. The second design is to store the input in the

BRAM and compare all the pixels with the computed nearest

centroid using parallel architecture. The second method

require more hardware but can operate in a single clock cycle.

The input unit requires, 65,536 clock cycles to compare the

intensity levels of all the pixels in a 256X256 sized image,

2,62,144 clock cycles to compare the intensity levels of all the

pixels in a 512X512 sized image and so on. After initially

comparing the image pixels in the input unit, rest all the units

like nearest centroid selector, sum computer, divider, and

convergence unit with output unit would take 1 clock cycle

for completion. Totally, it requires 4 clock cycles for

completion of 1 iteration. Even if the maximum number of

iterations required is 10, then totally 40 clock cycles are

required. To complete the clustering operation for 256X256

image, we require 65576 clock cycle. The architecture

operates at a speed of 26.622 MHz and hence the entire image

can be processed in 0.0049 sec which indicate that the

architecture can process 203 frames per second. Similarly,

512X512 image can be processed in 0.0098 sec and can

process 102 frames per second. This indicate that the

proposed hardware architecture is well suited to work in the

real time environment.

The last part of verification is comparison of the work with

previous literature. This proposed architecture is compared

with work of [8]. The proposed architecture performs division

operation in a single clock cycle and can process more

number of image frames per second.

Table 2: Comparison of the proposed architecture with

related works

Specifications T.W.Chen[8] Proposed

architecture

Implementation

method

ASIC-TSMC

90 nm

 Virtex 6 FPGA

Maximum cluster

number

1-16 1-8

Maximum data

number

220 Any image size

Clock cycles

required for

division operation

More than 10 Single clock

cycle

Frame rate Not specified 256X256/ 203

fps

Distance calculator Manhattan/Euc

lidean

Manhattan

5. CONCLUSION
Hardware architecture of K-Means clustering algorithm is

proposed. Majority of the time is consumed in K-means

clustering by computing the distances between each of the K

centroids and the image data pixel. Much of the distance

computations are repetitive as the intensity levels in an image

are repeated numbers within the range 0 to 255. Hence the

hardware proposed reduces the time in distance computation

by computing the distance between the centroids and 256

intensity level irrespective of the image size. The proposed

hardware utilize less space compared to original K-means

architecture. Also for an image size of 256X256, the

clustering operation can be computed as fast as 203 frames

per second which indicate that the proposed hardware is well

suited for real time applications.

6. REFERENCES
[1] J. B. MacQueen, 1967 “Some methods for classification

and analysis of multivariate observation”, In: Le Cam,

L.M., Neyman, J. (Eds.), University of California.

[2] Yang, Bo, Xiao Fu, Nicholas D. Sidiropoulos, and

Mingyi Hong. "Towards k-means-friendly spaces:

Simultaneous deep learning and clustering."

In Proceedings of the 34th International Conference on

Machine Learning-Volume 70, pp. 3861-3870. JMLR.

Org, 2017.

[3] Windarto, Agus Perdana. "Implementation of Data

Mining on Rice Imports by Major Country of Origin

Using Algorithm Using K-Means Clustering

Method." International Journal of Artificial Intelligence

Research 1, no. 2 (2017).

[4] Jiang, Xiaoping, Chenghua Li, and Jing Sun. "A

modified K-means clustering for mining of multimedia

databases based on dimensionality reduction and

similarity measures." Cluster Computing (2017): 1-8.

[5] G. d. S. Filho, A. C. Frery, C. C. de Araújo, H. Alice, J.

Cerqueira,J. A. Loureiro, M. E. de Lima, M. d. G. S.

Oliveira, and M. M. Horta, “Hyperspectral images

clustering on reconfigurable hardware using the K-means

0

50000

100000

150000

200000

1 2 3 4

Sl
ic

e
LU

Ts

Cluster number

Utilization of Slice LUTs with K

K Slice LUT

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 30, August 2019 – www.caeaccess.org

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 30, August 2019 – www.caeaccess.org

10

algorithm,” in Proc. Symp. Integr. Circuits Syst. Des.,

Sep.2003, pp. 99–104.

[6] Saegusa T, Maruyama T.: ‘An FPGA implementation of

real-time K-means clustering for color images’. Journal

of Real-Time Image Processing. 2007 Dec 1; 2(4):309-

18.

[7] Maruyama, Tsutomu. "Real-time k-means clustering for

color images on reconfigurable hardware." In 18th

International Conference on Pattern Recognition

(ICPR'06), vol. 2, pp. 816-819. IEEE, 2006.

[8] Chen, Tse-Wei, and Shao-Yi Chien.: "Bandwidth

adaptive hardware architecture of K-means clustering for

video analysis." IEEE transactions on very large scale

integration (VLSI) systems 18, no. 6 (2009): 957-966.

[9] Chen, Tse-Wei, and Shao-Yi Chien. "Flexible hardware

architecture of hierarchical K-means clustering for large

cluster number." IEEE transactions on very large scale

integration (VLSI) systems 19, no. 8 (2010): 1336-1345.

[10] T.-W. Chen, Y.-L. Chen and S.-Y. Chien, “Fast image

segmentation based on K-Means clustering with

histograms in HSV color space,” in Proceedings of IEEE

International Workshop on Multimedia Signal

Processing, Oct. 2008, pp. 322–325.

[11] AC Frery, CCde Araujo, H Alice “Hyperspectral images

clustering on reconfigurable hardware using the K-

Means algorithm” in Proc. IEEE Int. Symp. Circuits

Syst., Sep 2003, pp. 94–104

[12] B. Maliatski and O. Yadid-Pecht, “Hardware-driven

adaptive K-means clustering for real-time video

imaging,” IEEE Trans. Circuits Syst.Video Technol., vol.

15, no. 1, pp. 164–166, Jan. 2005.

[13] Huang and D.-H. Liu, “Segmentation of color image

using EM algorithm in HSV color space,” in

Proceedings of IEEE International Conference on

Information Acquisition, Jul. 2007, pp. 316–319.

[14] S. J. Redmond, C. Heneghan, “A method for initializing

the K-means clustering algorithm using kd-trees. Science

direct”, Pattern Recognition Letters 28 (2007) 965–973

[15] T.-W. Chen, C.-H. Sun, J.-Y. Bai, H.-R. Chen, and S.-Y.

Chien, “Architectural analyses of K-Means silicon

intellectual property for image segmentation,” in Proc.

IEEE Int. Symp. Circuits Syst., May 2008, pp. 2578–

2581.

[16] Anuradha, M. G., and L. Basavaraj. "Design and

Implementation of High Speed VLSI Architecture of

Online Clustering Algorithm for Image Analysis." Data

Engineering and Intelligent Computing. Springer,

Singapore, 2018. Pp. 197-206.

