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ABSTRACT 

A multiplier block can be implemented either by shift add 

technique, Booth algorithm or Vedic algorithm, in DSP 

applications. However, these techniques do not work for a 

certain class of numbers known as exceptions. They are 

+infinity, -infinity and Not a Number (NaN). The solution to 

address these exceptions is a “Fused add-subtract” module. 

The addition and subtraction modules are fused together to 

give two outputs giving both addition and subtraction results. 

The time delay and the number of Look-Up Tables (LUTs) of 

the existing Fused add-subtract unit have been found to be 

quite high to meet the present-day requirements of speed. 

Therefore, a novel algorithm for fused add-subtract has been 

proposed in this paper. In the floating-point unit (FPU), 

building blocks of the addition and subtraction are fused 

together, resulting in reduction of the number of computations 

as well as the area usage. The existing fused add-sub module 

is compared with the proposed module in terms of delay and 

the number of LUTs. The new algorithm is observed to reduce 

the time delay and area by 12.5% and 18.878% respectively as 

compared to the conventional one.   
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1. INTRODUCTION 
Multipliers are the basic blocks of various applications. For 

instance, Digital Signal Processing (DSP) applications revolve 

around techniques that require an efficient multiplier, so that 

the time delay can be minimized. Not only DSP but also areas 

of circuit design, communications, embedded system design, 

etc. need an optimized multiplier based on reduced power and 

area usage. The various multipliers have evolved from Booth 

multipliers to fused add multipliers and so on. This paper is 

about the fused add-sub module which is obtained from the 

fusion of addition and subtraction unit. The conventional one 

has some cons, which is overcome by the proposed fused add-

sub unit. This module is observed to have optimized area, less 

time delay and power too.  

The literature survey of the IEEE 754-2008 floating point unit 

(FPU), multiplier block associated with it and fused add-sub 

multiplier has been discussed in section 2. This section also 

includes the problem statement formulation after realizing the 

conventional add-sub multiplier in Vivado 2015.4. The 

detailed operations of the existing and the proposed multiplier 

are described in section 3. The simulations of the multipliers 

and a comparison between them based on certain parameters 

are discussed in section 4. The paper is concluded in section 

5. This section also focusses on the future aspect of the 

proposed multiplier that is the aim of our upcoming work. At 

last, section 6 includes the references.  

2. PROBLEM STATEMENT 
Different multipliers are detailed in this section. The basic 

IEEE 754-2008 FPU is discussed first. Then the multiplier 

block followed by the fused add-sub unit is discussed.  

2.1 IEEE 754-2008 floating point unit 
The basic idea about an IEEE 754-2008 FPU is obtained from 

[1]. It discusses the bitwise representation of single and 

double precision format of the aforementioned standard. [2] 

includes the matrix multiplication using FPGA, giving a brief 

idea about the implementation of the process on boards. The 

various arithmetic operations carried out in an FPU are 

discussed in [3]. Among the various multipliers, the Vedic 

multiplier is discussed in [4], showing the advantage of using 

a Vedic multiplier over a conventional one. A better multiplier 

is proposed and analyzed in [5] that are basically a shift-add 

multiplier technique, showing some more advantages than the 

Vedic multiplier.  

2.2 Fused Add-Subtract Module of IEEE 

754-2008 Single Precision 
There exists another module that is a fused add-sub module, 

as discussed in [6, 7] for the FPU. This technique is used in 

the formulation of another technique called the fused 

multiply-add unit [8, 9] for DSP applications. Further, the 

technique used to reduce the latency in the FPU, is discussed 

in [10-12]. The Standard gives a platform for two radix- 2 and 

10, which can further be extended for rounded mixed-radix 

operations [13]. The correct average of floating-point numbers 

(FPU) was proposed for radix 2 and 10, this is useful for 

implementation of IEEE 754-2008 [14]. 

The fused Add-Subtract algorithm has addition and 

subtraction modules fused together to give two outputs, both 

addition and subtraction results. However, this algorithm also 

has high values of time delay and a significant number of 

Look-Up Tables. Therefore, a novel algorithm of fused add-

subtract has been proposed in our work. Here, there will be a 

single output as its result depending upon the type of 

operation it is supposed to perform. 

3. PROPOSED ALGORITHM 
In this section, the detailed architecture along with the flow 

diagrams and algorithms of the previous discussions (as 

mentioned in section II) are presented. The initial portion in 

this section includes the disadvantage of IEEE 754-2008 FPU 

Single Precision of multiplier that is the “exceptions”. The 

next portions include the arithmetic operations done in the 

above-mentioned standard. The conventional and the 

proposed fused add-sub unit in an FPU multiplier are 

discussed next. 
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3.1 IEEE 754-2008 FPU Single Precision 

Multiplication 
Single-precision format is a format that takes 32 bits in a 

computer memory. It represents the values using a floating 

point. 

The number is represented by the following: [1] 

((-1)^S) x (1.M) x (2^ (E-127))                                             (1) 

Here S stands for Sign bit, M stands for 23-bit mantissa 

(significand); E stands for 8 bits exponent. 

Table 1.  Bitwise Representation of Single Precision IEEE 

754 Standard 

 

 

Fig. 1: Block schematic of Multiplication scheme in 

IEEE 754-2008 single precision FPU. 

From the flow chart shown in figure 1, 

Result of Y=A*B  

= (-1) s1 (M1 x 2 E1) * (-1) s2 (M2 x 2 E2)      (2) 

S1, S2   are the: Sign bits (32nd bits of number A & B).  

E1, E2 are the exponent bits of number A & B.  

M1, M2 are the: Mantissa bits of Numbers A& B. [1]  

Step 1:      S3 = S1     XOR   S2  

Step 2:      M3 = M1 * M2 (Multiplier Block) 

Step 3:      E3 = E1 + E2 – 127 + bias (Exponent Block) 

Step 4:   The bias value is calculated from the number of 

shifts done by the    multiplier       

S3 occupies the 31st bit of the result. M3 occupies [22:0] bits 

of the result. E3 occupies [30:23] bits of the result.  

3.2 Exceptions 
The multiplier block shown in figure 1, is used in various 

multipliers. But multiplier schemes such as Booth, Vedic, 

shift-add [1] do not work for a certain class of numbers. These 

numbers are exceptions. They are +infinity, -infinity and Not 

a Number (NaN). 

3.3 IEEE 754-2008 Single Precision 

Addition Module 
The basic condition for the module as illustrated in figure 2 to 

perform, is that ‘a’ and ‘b’ can only be added if the exponents 

are the same that is e1=e2 [6, 13]. 

 

Fig. 2: Flowchart of IEEE 754-2008 Single Precision 

Addition Module. 

If e1>=e2, calculate the difference of the exponent. Shift E2 

by d number of bits. Assign enew as E1; else calculate the 

difference of exponent. Shift E1 by d number of bits. Assign 

enew as E2. Compute the sum of the mantissa m1 and m2 and 

store it in m3. And sign bit being zero as it is the addition the 

value is stored as sign bit is zero, the exponent is assigned 

enew and mantissa is assigned m3. 

3.4 IEEE 754-2008 Single Precision 

Subtraction Module 
The basic condition for the module as illustrated in figure 3, to 

perform that is ‘a’ and ‘b’ can only be added if the exponents 

are the same that is e1=e2. [6, 13]. 

If e1>e2, calculate difference of exponent (d). Assign enew as 

e1. Assign greater value ‘s’ as m1 and smaller value ‘t’ as m2. 

Else, if e1<e2, calculate difference of exponent (d). Assign 

enew as e2. Assign greater value ‘s’ as m2 and smaller value 

‘t’ as m1. Else If e1 = e2, then find out the greater of the M1 

and M2. The smaller mantissa gets shifted to right by d 

Precision Sign Exponent Mantissa 

Single [31] [30:23] = 8 bits [22:0] = 23 bits 
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number of bits. Compute the difference of the mantissa. 

Assign it to ‘r’. In other words, r = s – t. Then iteration is 

performed to find out number of bits (i) after which bit ‘1’ is 

found. The normalized exponent becomes enew-i.  

 

Fig. 3: Flowchart of IEEE 754-2008 Single Precision Subtraction Module. 

3.5 Fused Add-Subtract Module of IEEE 

754-2008 Single Precision 
The method as shown in figure 4 was proposed in [6]. The 

first two steps are the same as that of addition or subtraction. 

Assigning of the values to the variables also follows the 

previous methods of addition and subtraction as outlined in 

figure 2 and 3. The difference lies in the fact that both 

addition and subtraction are carried out simultaneously and 

both the result of addition and subtraction is presented. In 

some DSP applications like the FFT, there is usage of addition 

and subtraction in the same equation. So here the advantage is 

there is no need to call the addition and subtraction separately 

for the parameters to perform the arithmetic operations over 

and over again. 
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Fig. 4: Flow chart of Fused Add-Subtract Module of 

IEEE 754-2008 Single Precision. 

3.6 Proposed IEEE 754 2008 Single 

Precision Fused Add-Subtract 

 

Fig. 5: Flowchart of Proposed IEEE 754 2008 Single 

Precision Fused Add-Subtract. 

The proposed algorithm here has both addition and 

subtraction into a single unit. The motivation behind this is 

the same process followed in adding or subtracting two binary 

numbers. The process can be seen in figure 5. First, two inputs 

are given in the IEEE 754-2008 single precision format and 

then a conditional checker identifies which operation to 

follow depending on the sign bits of the given inputs. After 

deciding which module, it will execute it goes towards that 

particular module. The addition block is very direct as is 

explained in section 3.5. The subtraction block however 

follows a different approach. Here the mantissa part is 

converted into 2’s complement notation and then the signed 

adder-subtractor is called. As the subtraction of two numbers 

is same as the addition of their 2’s complement form. Hence 

both the modules are called with the same signed 

adder/subtractor. Thereby it reduces the time delay as well as 

its area utilization. This leads to less area utilized as well as 

reduction in time delay. 

4. RESULT ANALYSIS 
In this section, the simulation results of the techniques 

mentioned in section 3 are discussed. Simulations are carried 

out in Vivado 2015.4 in Verilog HDL. The initial parts of this 

section consist of the simulation results and discussion of an 

IEEE 754-2008 single precision FPU with three exception 

cases. The exceptions indicate the limitation of the 

multipliers. The cases are +infinity, -infinity and Not-a-

number (NaN). These results are followed by the addition 

unit, subtraction unit, and existing fused add-sub unit and the 

proposed algorithm. 

4.1 Exceptions in IEEE 754-2008 FPU 

 

Fig. 6: Simulation of +Infinity in IEEE 754-2008 single 

precision FPU. 

In figure 6, the exception flag can be seen as +infinity if any 

of the input has an all ‘1’ exponent and mantissa as zero. The 

sign bit is zero. 

 

Fig. 7: Simulation of - Infinity in IEEE 754-2008 single 

precision FPU. 

In figure 7, the exception flag can be seen as +infinity if any 

of the input has an all ‘1’ exponent and mantissa as zero. The 

sign bit is 1. 
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Fig. 8: Simulation of Not a Number in IEEE 754-2008 

single precision FPU. 

In figure 8, the exception flag can be seen as Not a Number if 

any of the input has an all ‘1’ exponent and mantissa as non-

zero. The sign bit is may be ‘1’ or ‘0’. 

4.2 IEEE 754-2008 Single Precision 

Addition Module 

 

Fig. 9: Simulation of IEEE 754 single Precision of 

Addition. 

The values of A and B are as follows, 

A = 17.86 = 00111111110110100000000000000000 

B = 12.111=00111111110011100000000000000000 

Upon Adding A and B, 

Result is 29.971=00111111110101000000000000000000 

The above result is obtained from the flow chart given in 

figure 2. The results were verified from the simulation result 

shown in figure 9.  

4.3 IEEE 754-2008 Single Precision 

Subtraction Module 

 

Fig. 10: Simulation of IEEE 754 2008 Single Precision 

Subtraction Module. 

Here the values that are simulated are: 

A = 17.86 = 00111111110110100000000000000000 

B = 12.111=00111111110011100000000000000000 

Upon Subtracting A and B, 

Result is 5.749 =00111111000011000000000000000000 

The above result is obtained from the flow chart given in 

figure 3. The results were verified from the simulation result 

shown in figure 10.  

4.4 Fused Add-Subtract Module of IEEE 

754-2008 Single Precision 

 

Fig. 11: Simulation of Fused Add Subtract. 

Here the values that are simulated are 

A = 17.86   = 00111111110110100000000000000000 

B = 12.111 = 00111111110011100000000000000000 

Upon adding A and B, 

Result is 29.971 = 00111111110101000000000000000000 

Upon Subtracting A and B, 

Result is 5.749 =00111111000011000000000000000000 

The above result is obtained from the flow chart given in 

figure 4. The results were verified from the simulation result 

shown in figure 11. Here both addition and subtraction values 

are obtained in a single function call. 

4.5 Proposed IEEE 754 2008 Single 

Precision Fused Add-Subtract 

 

Fig. 12: Simulation of Fused Add-Subtract with addition 

inputs. 

Here the values that are simulated are 

A = 17.86=00111111110110100000000000000000 

B = 12.111=00111111110011100000000000000000 

Upon adding A and B, 

Result is 29.971 = 00111111110101000000000000000000 

The value is verified as shown in the simulation done using 

Vivado 2015.4 in Verilog HDL in figure 12. 

 

Fig. 13: Simulation of Fused Add-Subtract with 

subtraction inputs. 
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Upon subtracting same numbers, the result obtained is, 

5.749 =00111111000011000000000000000000 

The value is verified as shown in the simulation obtained in 

figure 13. 

Figure 14 represents the RTL schematic of the proposed 

Fused Add-Subtract module. The small boxes are called as 

Look-Up Tables (LUTs). The number of LUTs used in this 

technique is 434 out of a total of 53200. Hence the usage 

percentage of LUTs in this technique is 0.0081 %.  

 

Fig. 14: RTL Schematic of proposed Fused Add-

Subtract. 

 

Fig. 15: Simulation of Fused Add/Subtract when A = B 

and Sign bit is different 

The mantissa and exponents of both A and B are equal but the 

sign bits are unequal. 

The output is equal to 0 as shown in figure 15. 

 

Fig. 16: Simulation of Fused Add-Subtract when A < B 

and Subtraction is carried out. 

Let us take two values A and B. 

A = 1.609375 = 0011111110110100000000000000000 

B = -1.703125 = 10111111110011100000000000000000 

Output(Y)=-0.09375= 

10111111000011000000000000000000 

The output is verified as shown in figure 16. 

 

Fig. 17: Simulation of Fused Add-Subtract When both A 

and B are negative. 

Let us take two values A and B. 

A = -1.609375 = 1011111110110100000000000000000 

B = -1.703125 = 10111111110011100000000000000000 

Output(Y)=-3.3125 

=1011111111010100000000000000000000 

The output is verified as in figure 17. 

Table 2. Comparison Between the Proposed and the 

Existing Fused Add-Subtract in Terms Of Time Delay 

Algorithm 

 

Fused Add-

Subtract 

Proposed Fused 

Add-Subtract 

Max. 

Combinational 

Path Delay (in ns) 

21.36 18.69 

 

It is observed from Table II that the proposed Fused Add-

Subtract is has less time delay as compared to the existing 

Fused Add-Subtract. 

Table 3. Comparison Between Proposed and Existing 

Fused Add/Subtract in Terms Of Area Usage 

Algorithm 

 

Fused Add-

Subtract 

Proposed Fused 

Add-Subtract 

Number of LUTs 535 434 

% Area Usage (out 

of 53200 LUTs) 

0.0100 0.0081 

 

It is observed from Table III that the proposed Fused Add-

Subtract is has less area usage as compared to the existing 

one. 

5. CONCLUSION 
The conventional fused Add-Subtract are useful for limited 

operations such as FFT where in one equation, the addition 

and subtraction of the same operands was obtained. The 

proposed Fused Add-Subtract is found to have a very less 

time delay 18.69 nanoseconds as compared to the 21.36 

nanoseconds of the existing Fused Add-Subtract resulting in a 

reduction of time delay by 12.50 %. In addition to a reduced 

time delay, it is also found to have an area usage of 434 LUTs 

as compared to 535 of the existing Fused Add-Subtract, 

thereby reducing the area usage by 18.878 %. Three different 

cases of Fused Add-Subtract have been discussed and 

simulated. The new unit can be implemented in DSP 

applications using system generator, TMS320C6748 and 

TMS320C6713 DSP kit. It can also be implemented through 

code composer studio toolbox. 
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