

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 33, February 2020 – www.caeaccess.org

1

Design of a Novel Fused Add-Sub Module for IEEE 754-

2008 Floating Point Unit in High Speed Applications

Abhyarthana Bisoyi
College of Engineering & Technology

Bhubaneswar, India

Aruna Tripathy, PhD
College of Engineering & Technology

Bhubaneswar, India

ABSTRACT

A multiplier block can be implemented either by shift add

technique, Booth algorithm or Vedic algorithm, in DSP

applications. However, these techniques do not work for a

certain class of numbers known as exceptions. They are

+infinity, -infinity and Not a Number (NaN). The solution to

address these exceptions is a “Fused add-subtract” module.

The addition and subtraction modules are fused together to

give two outputs giving both addition and subtraction results.

The time delay and the number of Look-Up Tables (LUTs) of

the existing Fused add-subtract unit have been found to be

quite high to meet the present-day requirements of speed.

Therefore, a novel algorithm for fused add-subtract has been

proposed in this paper. In the floating-point unit (FPU),

building blocks of the addition and subtraction are fused

together, resulting in reduction of the number of computations

as well as the area usage. The existing fused add-sub module

is compared with the proposed module in terms of delay and

the number of LUTs. The new algorithm is observed to reduce

the time delay and area by 12.5% and 18.878% respectively as

compared to the conventional one.

Keywords
Floating Point Unit, fused add-sub, Multipliers, Time Delay,

Functional Area, Digital Circuits, Digital Signal Processing,

FPGA

1. INTRODUCTION
Multipliers are the basic blocks of various applications. For

instance, Digital Signal Processing (DSP) applications revolve

around techniques that require an efficient multiplier, so that

the time delay can be minimized. Not only DSP but also areas

of circuit design, communications, embedded system design,

etc. need an optimized multiplier based on reduced power and

area usage. The various multipliers have evolved from Booth

multipliers to fused add multipliers and so on. This paper is

about the fused add-sub module which is obtained from the

fusion of addition and subtraction unit. The conventional one

has some cons, which is overcome by the proposed fused add-

sub unit. This module is observed to have optimized area, less

time delay and power too.

The literature survey of the IEEE 754-2008 floating point unit

(FPU), multiplier block associated with it and fused add-sub

multiplier has been discussed in section 2. This section also

includes the problem statement formulation after realizing the

conventional add-sub multiplier in Vivado 2015.4. The

detailed operations of the existing and the proposed multiplier

are described in section 3. The simulations of the multipliers

and a comparison between them based on certain parameters

are discussed in section 4. The paper is concluded in section

5. This section also focusses on the future aspect of the

proposed multiplier that is the aim of our upcoming work. At

last, section 6 includes the references.

2. PROBLEM STATEMENT
Different multipliers are detailed in this section. The basic

IEEE 754-2008 FPU is discussed first. Then the multiplier

block followed by the fused add-sub unit is discussed.

2.1 IEEE 754-2008 floating point unit
The basic idea about an IEEE 754-2008 FPU is obtained from

[1]. It discusses the bitwise representation of single and

double precision format of the aforementioned standard. [2]

includes the matrix multiplication using FPGA, giving a brief

idea about the implementation of the process on boards. The

various arithmetic operations carried out in an FPU are

discussed in [3]. Among the various multipliers, the Vedic

multiplier is discussed in [4], showing the advantage of using

a Vedic multiplier over a conventional one. A better multiplier

is proposed and analyzed in [5] that are basically a shift-add

multiplier technique, showing some more advantages than the

Vedic multiplier.

2.2 Fused Add-Subtract Module of IEEE

754-2008 Single Precision
There exists another module that is a fused add-sub module,

as discussed in [6, 7] for the FPU. This technique is used in

the formulation of another technique called the fused

multiply-add unit [8, 9] for DSP applications. Further, the

technique used to reduce the latency in the FPU, is discussed

in [10-12]. The Standard gives a platform for two radix- 2 and

10, which can further be extended for rounded mixed-radix

operations [13]. The correct average of floating-point numbers

(FPU) was proposed for radix 2 and 10, this is useful for

implementation of IEEE 754-2008 [14].

The fused Add-Subtract algorithm has addition and

subtraction modules fused together to give two outputs, both

addition and subtraction results. However, this algorithm also

has high values of time delay and a significant number of

Look-Up Tables. Therefore, a novel algorithm of fused add-

subtract has been proposed in our work. Here, there will be a

single output as its result depending upon the type of

operation it is supposed to perform.

3. PROPOSED ALGORITHM
In this section, the detailed architecture along with the flow

diagrams and algorithms of the previous discussions (as

mentioned in section II) are presented. The initial portion in

this section includes the disadvantage of IEEE 754-2008 FPU

Single Precision of multiplier that is the “exceptions”. The

next portions include the arithmetic operations done in the

above-mentioned standard. The conventional and the

proposed fused add-sub unit in an FPU multiplier are

discussed next.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 33, February 2020 – www.caeaccess.org

2

3.1 IEEE 754-2008 FPU Single Precision

Multiplication
Single-precision format is a format that takes 32 bits in a

computer memory. It represents the values using a floating

point.

The number is represented by the following: [1]

((-1)^S) x (1.M) x (2^ (E-127)) (1)

Here S stands for Sign bit, M stands for 23-bit mantissa

(significand); E stands for 8 bits exponent.

Table 1. Bitwise Representation of Single Precision IEEE

754 Standard

Fig. 1: Block schematic of Multiplication scheme in

IEEE 754-2008 single precision FPU.

From the flow chart shown in figure 1,

Result of Y=A*B

= (-1) s1 (M1 x 2 E1) * (-1) s2 (M2 x 2 E2) (2)

S1, S2 are the: Sign bits (32nd bits of number A & B).

E1, E2 are the exponent bits of number A & B.

M1, M2 are the: Mantissa bits of Numbers A& B. [1]

Step 1: S3 = S1 XOR S2

Step 2: M3 = M1 * M2 (Multiplier Block)

Step 3: E3 = E1 + E2 – 127 + bias (Exponent Block)

Step 4: The bias value is calculated from the number of

shifts done by the multiplier

S3 occupies the 31st bit of the result. M3 occupies [22:0] bits

of the result. E3 occupies [30:23] bits of the result.

3.2 Exceptions
The multiplier block shown in figure 1, is used in various

multipliers. But multiplier schemes such as Booth, Vedic,

shift-add [1] do not work for a certain class of numbers. These

numbers are exceptions. They are +infinity, -infinity and Not

a Number (NaN).

3.3 IEEE 754-2008 Single Precision

Addition Module
The basic condition for the module as illustrated in figure 2 to

perform, is that ‘a’ and ‘b’ can only be added if the exponents

are the same that is e1=e2 [6, 13].

Fig. 2: Flowchart of IEEE 754-2008 Single Precision

Addition Module.

If e1>=e2, calculate the difference of the exponent. Shift E2

by d number of bits. Assign enew as E1; else calculate the

difference of exponent. Shift E1 by d number of bits. Assign

enew as E2. Compute the sum of the mantissa m1 and m2 and

store it in m3. And sign bit being zero as it is the addition the

value is stored as sign bit is zero, the exponent is assigned

enew and mantissa is assigned m3.

3.4 IEEE 754-2008 Single Precision

Subtraction Module
The basic condition for the module as illustrated in figure 3, to

perform that is ‘a’ and ‘b’ can only be added if the exponents

are the same that is e1=e2. [6, 13].

If e1>e2, calculate difference of exponent (d). Assign enew as

e1. Assign greater value ‘s’ as m1 and smaller value ‘t’ as m2.

Else, if e1<e2, calculate difference of exponent (d). Assign

enew as e2. Assign greater value ‘s’ as m2 and smaller value

‘t’ as m1. Else If e1 = e2, then find out the greater of the M1

and M2. The smaller mantissa gets shifted to right by d

Precision Sign Exponent Mantissa

Single [31] [30:23] = 8 bits [22:0] = 23 bits

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 33, February 2020 – www.caeaccess.org

3

number of bits. Compute the difference of the mantissa.

Assign it to ‘r’. In other words, r = s – t. Then iteration is

performed to find out number of bits (i) after which bit ‘1’ is

found. The normalized exponent becomes enew-i.

Fig. 3: Flowchart of IEEE 754-2008 Single Precision Subtraction Module.

3.5 Fused Add-Subtract Module of IEEE

754-2008 Single Precision
The method as shown in figure 4 was proposed in [6]. The

first two steps are the same as that of addition or subtraction.

Assigning of the values to the variables also follows the

previous methods of addition and subtraction as outlined in

figure 2 and 3. The difference lies in the fact that both

addition and subtraction are carried out simultaneously and

both the result of addition and subtraction is presented. In

some DSP applications like the FFT, there is usage of addition

and subtraction in the same equation. So here the advantage is

there is no need to call the addition and subtraction separately

for the parameters to perform the arithmetic operations over

and over again.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 33, February 2020 – www.caeaccess.org

4

Fig. 4: Flow chart of Fused Add-Subtract Module of

IEEE 754-2008 Single Precision.

3.6 Proposed IEEE 754 2008 Single

Precision Fused Add-Subtract

Fig. 5: Flowchart of Proposed IEEE 754 2008 Single

Precision Fused Add-Subtract.

The proposed algorithm here has both addition and

subtraction into a single unit. The motivation behind this is

the same process followed in adding or subtracting two binary

numbers. The process can be seen in figure 5. First, two inputs

are given in the IEEE 754-2008 single precision format and

then a conditional checker identifies which operation to

follow depending on the sign bits of the given inputs. After

deciding which module, it will execute it goes towards that

particular module. The addition block is very direct as is

explained in section 3.5. The subtraction block however

follows a different approach. Here the mantissa part is

converted into 2’s complement notation and then the signed

adder-subtractor is called. As the subtraction of two numbers

is same as the addition of their 2’s complement form. Hence

both the modules are called with the same signed

adder/subtractor. Thereby it reduces the time delay as well as

its area utilization. This leads to less area utilized as well as

reduction in time delay.

4. RESULT ANALYSIS
In this section, the simulation results of the techniques

mentioned in section 3 are discussed. Simulations are carried

out in Vivado 2015.4 in Verilog HDL. The initial parts of this

section consist of the simulation results and discussion of an

IEEE 754-2008 single precision FPU with three exception

cases. The exceptions indicate the limitation of the

multipliers. The cases are +infinity, -infinity and Not-a-

number (NaN). These results are followed by the addition

unit, subtraction unit, and existing fused add-sub unit and the

proposed algorithm.

4.1 Exceptions in IEEE 754-2008 FPU

Fig. 6: Simulation of +Infinity in IEEE 754-2008 single

precision FPU.

In figure 6, the exception flag can be seen as +infinity if any

of the input has an all ‘1’ exponent and mantissa as zero. The

sign bit is zero.

Fig. 7: Simulation of - Infinity in IEEE 754-2008 single

precision FPU.

In figure 7, the exception flag can be seen as +infinity if any

of the input has an all ‘1’ exponent and mantissa as zero. The

sign bit is 1.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 33, February 2020 – www.caeaccess.org

5

Fig. 8: Simulation of Not a Number in IEEE 754-2008

single precision FPU.

In figure 8, the exception flag can be seen as Not a Number if

any of the input has an all ‘1’ exponent and mantissa as non-

zero. The sign bit is may be ‘1’ or ‘0’.

4.2 IEEE 754-2008 Single Precision

Addition Module

Fig. 9: Simulation of IEEE 754 single Precision of

Addition.

The values of A and B are as follows,

A = 17.86 = 00111111110110100000000000000000

B = 12.111=00111111110011100000000000000000

Upon Adding A and B,

Result is 29.971=00111111110101000000000000000000

The above result is obtained from the flow chart given in

figure 2. The results were verified from the simulation result

shown in figure 9.

4.3 IEEE 754-2008 Single Precision

Subtraction Module

Fig. 10: Simulation of IEEE 754 2008 Single Precision

Subtraction Module.

Here the values that are simulated are:

A = 17.86 = 00111111110110100000000000000000

B = 12.111=00111111110011100000000000000000

Upon Subtracting A and B,

Result is 5.749 =00111111000011000000000000000000

The above result is obtained from the flow chart given in

figure 3. The results were verified from the simulation result

shown in figure 10.

4.4 Fused Add-Subtract Module of IEEE

754-2008 Single Precision

Fig. 11: Simulation of Fused Add Subtract.

Here the values that are simulated are

A = 17.86 = 00111111110110100000000000000000

B = 12.111 = 00111111110011100000000000000000

Upon adding A and B,

Result is 29.971 = 00111111110101000000000000000000

Upon Subtracting A and B,

Result is 5.749 =00111111000011000000000000000000

The above result is obtained from the flow chart given in

figure 4. The results were verified from the simulation result

shown in figure 11. Here both addition and subtraction values

are obtained in a single function call.

4.5 Proposed IEEE 754 2008 Single

Precision Fused Add-Subtract

Fig. 12: Simulation of Fused Add-Subtract with addition

inputs.

Here the values that are simulated are

A = 17.86=00111111110110100000000000000000

B = 12.111=00111111110011100000000000000000

Upon adding A and B,

Result is 29.971 = 00111111110101000000000000000000

The value is verified as shown in the simulation done using

Vivado 2015.4 in Verilog HDL in figure 12.

Fig. 13: Simulation of Fused Add-Subtract with

subtraction inputs.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 33, February 2020 – www.caeaccess.org

6

Upon subtracting same numbers, the result obtained is,

5.749 =00111111000011000000000000000000

The value is verified as shown in the simulation obtained in

figure 13.

Figure 14 represents the RTL schematic of the proposed

Fused Add-Subtract module. The small boxes are called as

Look-Up Tables (LUTs). The number of LUTs used in this

technique is 434 out of a total of 53200. Hence the usage

percentage of LUTs in this technique is 0.0081 %.

Fig. 14: RTL Schematic of proposed Fused Add-

Subtract.

Fig. 15: Simulation of Fused Add/Subtract when A = B

and Sign bit is different

The mantissa and exponents of both A and B are equal but the

sign bits are unequal.

The output is equal to 0 as shown in figure 15.

Fig. 16: Simulation of Fused Add-Subtract when A < B

and Subtraction is carried out.

Let us take two values A and B.

A = 1.609375 = 0011111110110100000000000000000

B = -1.703125 = 10111111110011100000000000000000

Output(Y)=-0.09375=

10111111000011000000000000000000

The output is verified as shown in figure 16.

Fig. 17: Simulation of Fused Add-Subtract When both A

and B are negative.

Let us take two values A and B.

A = -1.609375 = 1011111110110100000000000000000

B = -1.703125 = 10111111110011100000000000000000

Output(Y)=-3.3125

=1011111111010100000000000000000000

The output is verified as in figure 17.

Table 2. Comparison Between the Proposed and the

Existing Fused Add-Subtract in Terms Of Time Delay

Algorithm

Fused Add-

Subtract

Proposed Fused

Add-Subtract

Max.

Combinational

Path Delay (in ns)

21.36 18.69

It is observed from Table II that the proposed Fused Add-

Subtract is has less time delay as compared to the existing

Fused Add-Subtract.

Table 3. Comparison Between Proposed and Existing

Fused Add/Subtract in Terms Of Area Usage

Algorithm

Fused Add-

Subtract

Proposed Fused

Add-Subtract

Number of LUTs 535 434

% Area Usage (out

of 53200 LUTs)

0.0100 0.0081

It is observed from Table III that the proposed Fused Add-

Subtract is has less area usage as compared to the existing

one.

5. CONCLUSION
The conventional fused Add-Subtract are useful for limited

operations such as FFT where in one equation, the addition

and subtraction of the same operands was obtained. The

proposed Fused Add-Subtract is found to have a very less

time delay 18.69 nanoseconds as compared to the 21.36

nanoseconds of the existing Fused Add-Subtract resulting in a

reduction of time delay by 12.50 %. In addition to a reduced

time delay, it is also found to have an area usage of 434 LUTs

as compared to 535 of the existing Fused Add-Subtract,

thereby reducing the area usage by 18.878 %. Three different

cases of Fused Add-Subtract have been discussed and

simulated. The new unit can be implemented in DSP

applications using system generator, TMS320C6748 and

TMS320C6713 DSP kit. It can also be implemented through

code composer studio toolbox.

6. REFERENCES
[1] Anjanasasidharan and P. Nagarajan, “VHDL

implementation of IEEE 754 floating point unit”, In

Proceedings of the IEEE Conference on Information

Communication and Embedded Systems (ICICES ’14),

pp. 1-5, 2014.

[2] F. Bensaali, A. Amira, and R. Sotudeh, “Floating-Point

Matrix Product on FPGA”, In Proceedings of

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 33, February 2020 – www.caeaccess.org

7

theIEEE/ACS International Conference on Computer

Systems and Applications (AICCSA’07), pp. 466-473,

2007.

[3] Muller, J.M., Brisbare, N., de Dinechin, F., et al. 2009.

Handbook of floating point arithmetic. (Birkhäuser,

2009)

[4] A. Bisoyi, M. Baral, and M. K. Senapati, “Comparison of

a 32-bit Vedic multiplier with a conventional binary

multiplier”, In Proceedings of the IEEE International

Conference on Advanced Communications, Control and

Computing Technologies (ICACCCT’14), pp. 1757-

1760, 2014.

[5] T. B. Juang, and Y. R. Lee, “Seamlessly Pipelined Shift-

and-Add Circuits Based on Precise Delay Analysis and

Its Applications”, In Proceedings of theIEEE Computer

Society Annual Symposium on VLSI (ISVLSI’16), pp.

625-630, 2016.

[6] H. Saleh, and E. E. Swartzlander, “A floating-point fused

add-subtract unit”, In Proceedings of the 51st Midwest

Symposium on Circuits and Systems (MWSCAS’08), pp.

519-522, 2008.

[7] A. Sharma, S. Singh and A. Sharma, “Implementation of

single precision conventional and fused floating point

add-sub unit using Verilog”, In Proceedings of theIEEE

International Conference on Wireless Communications,

Signal Processing and Networking (WiSPNET’17), pp.

169-171, 2017.

DOI=10.1109/WiSPNET.2017.8299741.

[8] A. Amaricai, O. Boncalo, and C. E. Gavriliu, “Low-

precision DSP-based floating-point multiply-add fused

for field programmable gate arrays”, IET Computers &

Digital Techniques, vol. 8 issue 4, pp. 187-197, 2014.

DOI=10.1049/iet-cdt.2013.0128.

[9] P. K. Meher, “Seamless pipelining of DSP circuits”,

Journal on Circuits, Systems, and Signal Processing, vol.

35 issue 4, pp.1147-1162, 2016.

DOI= 10.1007/s00034-015-0089-2.

[10] B. Xue, P. Chatterjee, and S. K. Shukla, “Simplification

of C-RTL equivalent checking for fused multiply add

unit using intermediate models”, In Proceedings of

the18th Asia and South Pacific Design Automation

Conference (ASP-DAC’13), pp. 723-728, 2013.

[11] J. D. Bruguera, and T. Lang, “Floating-point fused

multiply-add: reduced latency for floating-point

addition”, In Proceedings of the 17th IEEE Symposium

on Computer Arithmetic (ARITH'05), pp. 42-51, 2005.

[12] E. Quinnell, E. E. Swartzlander, and C. Lemonds,

“Bridge Floating-Point Fused Multiply-Add Design”,

IEEE Trans. on Very Large-Scale Integration (VLSI)

Systems. Vol. 16 issue 12, pp. 1727-1731, 2008.

[13] C. Jeangoudoux and C. Lauter, "A Correctly Rounded

Mixed Radix Fused-Multiply-Add", IEEE 25th

Symposium on Computer Arithmetic (ARITH), pp. 21-28,

2018.

[14] S. Boldo, F. Faissole and V. Tourneur, "A Formally-

Proved Algorithm to Compute the Correct Average of

Decimal Floating-Point Numbers", IEEE 25th

Symposium on Computer Arithmetic (ARITH), pp. 69-75,

2018.

[15] A. Mohapatra, A. Bisoyi and A. Tripathy, “Design of

Novel Multipliers-Vedic and Shift-Add for IEEE 754-

2008 Single Precision Floating-point Unit in High Speed

Applications”, Proceedings of 5th IEEE International

Symposium on Smart Electronic Systems (IEEE-iSES,

formerly IEEE-iNIS), pp. 159-162, 2019.

[16] V. Leon, S. Xydis, D. Soudris and K. Pekmestzi,

"Energy-efficient VLSI implementation of multipliers

with double LSB operands", in IET Circuits, Devices &

Systems, vol. 13, no. 6, pp. 816-821, 2019.

[17] K. Chen, Y. Hwang and Y. Liao, “VLSI Design of a

High Throughput Hybrid Precoding Processor for

Wireless MIMO Systems”, in IEEE Access, vol. 7, pp.

85925-85936, 2019.

[18] H. Vu and K. Chen, "A Low-Power Broad-Bandwidth

Noise Cancellation VLSI Circuit Design for In-Ear

Headphones", in IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 24, no. 6, pp. 2013-

2025, June 2016.

[19] H. Kultala et al., "LordCore: Energy-Efficient OpenCL-

Programmable Software-Defined Radio Coprocessor,"

in IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 27, no. 5, pp. 1029-1042, May 2019.

[20] S. Friedrichs, M. Függer and C. Lenzen, "Metastability-

Containing Circuits," in IEEE Transactions on

Computers, vol. 67, no. 8, pp. 1167-1183, 1 Aug. 2018.

https://doi.org/10.1007/s00034-015-0089-2

