CFP last date
28 February 2025
Reseach Article

CBDS-ConvNet: A Cyber-Bullying Detection Model using Convolutional Neural Network

by Ayodeji O. Akinwumi, Ayokunle O. Ige, Joy R. Obafemi, Olatunde D. Akinrolabu, Bolu O. Akingbesote
Communications on Applied Electronics
Foundation of Computer Science (FCS), NY, USA
Volume 7 - Number 40
Year of Publication: 2025
Authors: Ayodeji O. Akinwumi, Ayokunle O. Ige, Joy R. Obafemi, Olatunde D. Akinrolabu, Bolu O. Akingbesote
10.5120/cae2025652905

Ayodeji O. Akinwumi, Ayokunle O. Ige, Joy R. Obafemi, Olatunde D. Akinrolabu, Bolu O. Akingbesote . CBDS-ConvNet: A Cyber-Bullying Detection Model using Convolutional Neural Network. Communications on Applied Electronics. 7, 40 ( Jan 2025), 11-21. DOI=10.5120/cae2025652905

@article{ 10.5120/cae2025652905,
author = { Ayodeji O. Akinwumi, Ayokunle O. Ige, Joy R. Obafemi, Olatunde D. Akinrolabu, Bolu O. Akingbesote },
title = { CBDS-ConvNet: A Cyber-Bullying Detection Model using Convolutional Neural Network },
journal = { Communications on Applied Electronics },
issue_date = { Jan 2025 },
volume = { 7 },
number = { 40 },
month = { Jan },
year = { 2025 },
issn = { 2394-4714 },
pages = { 11-21 },
numpages = {9},
url = { https://www.caeaccess.org/archives/volume7/number40/cbds-convnet-a-cyber-bullying-detection-model-using-convolutional-neural-network/ },
doi = { 10.5120/cae2025652905 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-01-23T00:57:33.201263+05:30
%A Ayodeji O. Akinwumi
%A Ayokunle O. Ige
%A Joy R. Obafemi
%A Olatunde D. Akinrolabu
%A Bolu O. Akingbesote
%T CBDS-ConvNet: A Cyber-Bullying Detection Model using Convolutional Neural Network
%J Communications on Applied Electronics
%@ 2394-4714
%V 7
%N 40
%P 11-21
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In recent years, the increasing reliance on the internet and the integration of social media into daily life have led to significant advancements in various aspects of human activities. However, these developments have also facilitated unethical behaviors, with cyberbullying emerging as a critical concern. Traditional machine learning models for cyberbullying detection face challenges such as vulnerabilities to adversarial attacks and difficulty capturing nuanced or complex contextual information, often resulting in misclassifications. To address these limitations, this research introduces CBDS-ConvNet, a Convolutional Neural Network-based model designed for real time cyberbullying detection and prevention. The model is structured into five key layers: Data Collection, Data Preprocessing, Training, Cyberbullying Detection, and Performance Evaluation. Data from platforms such as Mendeley, Kaggle, and GitHub were utilized, with preprocessing ensuring the text data was clean and suitable for training. The model achieved an accuracy of 77.65%, precision of 56.26%, recall of 63.86%, and an F1 score of 60.20%, outperforming some other machine learning approaches. To further evaluate the robustness of the developed model, it was tested on a synthesized dataset, achieving an accuracy of 91%, precision of 89%, recall of 81%, and an F1 score of 85%. This research shows the capacity of CNNs in tackling the dynamic and complex nature of social media interactions. By enabling real-time cyberbullying detection, the CBD-ConvNet system provides a robust framework for safer online environments, thereby advancing research efforts in the field of cyberbullying prevention.

References
  1. N. S. Ruzgar, “A research on the purpose of internet usage and learning via internet,” Turkish Online J. Educ. Technol., vol. 4, no. 4, pp. 27–32, 2015.
  2. A. O. Akinwumi, A. O. Akingbesote, O. O. Ajayi, and F. O. Aranuwa, “Detection of Distributed Denial of Service (DDoS) attacks using convolutional neural networks,” Niger. J. Technol., vol. 41, no. 6, pp. 1017–1024, 2022, doi: 10.4314/njt.v41i6.12.
  3. A. Schonfeld, D. Mcniel, T. Toyoshima, and R. Binder, “Cyberbullying and Adolescent Suicide,” J. Am. Acad. Psychiatry Law, vol. 51, no. 1, pp. 112–119, 2023, doi: 10.29158/JAAPL.220078-22.
  4. A. O. Akinwumi, O. L. Ogbeide, and D. F. Folorunso, “Implementing Image Steganography Techniques for Secure Data Hiding in the Development of an Android Application,” Commun. Appl. Electron., vol. 7, no. 39, pp. 26–33, 2023, doi: 10.5120/cae2023652902.
  5. World Internet Stats, “World Internet Usage and Population Statistics,” Internet Usage Statistics. Accessed: Nov. 14, 2023. [Online]. Available: https://www.internetworldstats.com/stats.htm
  6. V. Malpe and S. Vaikole, “A Comprehensive Study on Cyberbullying Detection Using Machine Learning Approach,” vol. 13, no. 1, pp. 342–351, 2020.
  7. L. Minocha, P. Jain, A. Singh, and P. Pandey, “Social Media’s Impact on Business and Society: A Study,” in 8th International Conference on Advanced Computing and Communication Systems, ICACCS 2022, 2022, pp. 2078–2081. doi: 10.1109/ICACCS54159.2022.9784959.
  8. K. K. Kapoor, K. Tamilmani, N. P. Rana, P. Patil, Y. K. Dwivedi, and S. Nerur, “Advances in Social Media Research: Past, Present and Future,” Inf. Syst. Front., vol. 20, no. 3, pp. 531–558, 2018, doi: 10.1007/s10796-017-9810-y.
  9. O. Oriola and E. Kotze, “Evaluating Machine Learning Techniques for Detecting Offensive and Hate Speech in South African Tweets,” IEEE Access, vol. 8, no. 2020, pp. 21496–21509, 2020, doi: 10.1109/ACCESS.2020.2968173.
  10. A. Saravanaraj, J. I. Sheeba, and S. P. Devaneyan, “Automatic Detection of Cyberbullying From Twitter,” IRACST-International J. Comput. Sci. Inf. Technol. Secur., vol. 6, no. 6, pp. 2249–9555, 2019, [Online]. Available: https://www.researchgate.net/publication/333320174
  11. A. O. Adediran, “Cyberbullying in Nigeria: Examining the Adequacy of Legal Responses,” Int. J. Semiot. Law, no. 0123456789, 2020, doi: 10.1007/s11196-020-09697-7.
  12. A. Bozyi˘git, S. Utku, and E. Nasibov, “Cyberbullying detection : Utilizing social media features,” Expert Syst. Appl., vol. 179, no. 103411, 2021, doi: 10.1016/j.eswa.2021.115001.
  13. T. K. H. Chan, C. M. K. Cheung, and Z. W. Y. Lee, “Cyberbullying on social networking sites: A literature review and future research directions,” Inf. Manag., vol. 58, no. 2, p. 103411, 2020, doi: 10.1016/j.im.2020.103411.
  14. P. Ingle, R. Joshi, N. Kaulgud, A. Suryawanshi, and M. Lokhande, “Detecting Cyber Bullying on Twitter,” vol. 7, no. 19, pp. 1090–1094, 2020.
  15. S. Hinduja and J. W. Patchin, “Cyberbullying: Identification, Prevention, and Response 2024 Edition,” 2024. [Online]. Available: https://cyberbullying.org/Cyberbullying-Identification-Prevention-Response-2024.pdf
  16. H. Lin, P. Siarry, H. L. Gururaj, J. Rodrigues, and D. K. Jain, “Special Issue on Deep Learning Methods for Cyberbullying Detection in Multimodal Social Data,” Multimed. Syst., vol. 28, no. 6, pp. 1873–1875, 2022, doi: 10.1007/s00530-022-01000-x.
  17. R. S. Pawar, “Multilingual Cyberbullying Detection System,” The Purdue University, 2019.
  18. J. Hani, M. Nashaat, and M. Ahmed, “Social Media Cyberbullying Detection using Machine Learning,” vol. 10, no. 5, pp. 703–707, 2019.
  19. J. I. Nwufo and M. B. Nwoke, “Cyber Bullying in Contemporary Nigeria: Implications on Youths’ Psychological Wellbeing,” Pract. Psychol., vol. 8, no. 1, pp. 167–182, 2018, [Online]. Available: http://journals.aphriapub.com/index.php.pp
  20. M. Raj, S. Singh, K. Solanki, and R. Selvanambi, “An Application to Detect Cyberbullying Using Machine Learning and Deep Learning Techniques,” SN Comput. Sci., vol. 3, no. 5, pp. 1–13, 2022, doi: 10.1007/s42979-022-01308-5.
  21. R. Deschamps and K. Mcnutt, “Cyberbullying : What ’ s the problem ?,” Can. Public Adm., vol. 59, no. 1, pp. 45–71, 2016.
  22. N. M. Aune, “Cyberbullying,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019.
  23. K. C. Nwosu, E. C. Ngozi, and E. P. Eberechi, “Cyberbullying among undergraduate students in a Nigerian university: Awareness and incidence,” Rom. J. Psychol. Stud., vol. 6, no. 1, pp. 43–58, 2018.
  24. M. Fridh, M. Lindström, and M. Rosvall, “Subjective health complaints in adolescent victims of cyber harassment : moderation through support from parents / friends - a Swedish population-based study,” BMC Public Health, no. February 2016, 2015, doi: 10.1186/s12889-015-2239-7.
  25. B. S. Nandhini and J. I. Sheeba, “Online Social Network Bullying Detection Using Intelligence Techniques,” Procedia - Procedia Comput. Sci., vol. 45, pp. 485–492, 2015, doi: 10.1016/j.procs.2015.03.085.
  26. A. Muneer, “A Comparative Analysis of Machine Learning Techniques for Cyberbullying Detection on Twitter,” 2020.
  27. P. Hajibabaee, M. Malekzadeh, M. Ahmadi, M. H. A. Esmaeilzadeh, and R. Abdolazimi, “Offensive Language Detection on Social Media Based on Text Classification,” in 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 2022, pp. 0092–0098. doi: 10.1109/CCWC54503.2022.9720804.
  28. R. Chauhan, K. K. Ghanshala, and R. . Josh, “Convolutional Neural Network ( CNN ) for Image Detection and Recognition,” in 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), IEEE, 2018, pp. 278–282. doi: 10.1109/ICSCCC.2018.8703316.
  29. S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, “Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach,” Procedia Comput. Sci., vol. 132, pp. 679–688, 2018, doi: 10.1016/j.procs.2018.05.069.
  30. A. O. Ige and M. H. M. Noor, “A lightweight deep learning with feature weighting for activity recognition,” Comput. Intell., vol. 39, no. 2, pp. 315–343, 2022, doi: https://doi.org/10.1111/coin.12565.
  31. Z. Sun, “Pattern Recognition in Convolutional Neural Network (CNN),” Appl. Intell. Syst. Multi-modal Inf. Anal., vol. 138, pp. 295–302, 2022.
  32. H. M. Z. Haque, “Aortic Valve Segmentation using Convolutional Neural Network with Skip Mechanism,” Commun. Appl. Electron., vol. 7, no. 29, pp. 1–5, 2019.
  33. F. O. Aranuwa and O. B. Fawehinmi, “Classification Model For Iris Images Using Convolutional Neural Network ( CNN ),” in Proceedings of the 32nd Accra Multidisciplinary Cross-Border Conference (AMCBC), Accra, 2022, pp. 7–22.
  34. C. Szegedy, A. Toshev, and D. Erhan, “Deep Neural Networks for Object Detection,” Adv. neural Inf. Process. Syst., pp. 2553–2561, 2013, doi: 10.3928/19404921-20140820-01.
  35. Y. Zhang et al., “Towards end-to-end speech recognition with deep convolutional neural networks,” Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH, vol. 08-12-Sept, no. September, pp. 410–414, 2016, doi: 10.21437/Interspeech.2016-1446.
  36. X. Luo, R. Shen, J. Hu, J. Deng, L. Hu, and Q. Guan, “A Deep Convolution Neural Network Model for Vehicle Recognition and Face Recognition,” Procedia Comput. Sci., vol. 107, no. Icict, pp. 715–720, 2017, doi: 10.1016/j.procs.2017.03.153.
  37. A. Ucar, “Deep Convolutional Neural Networks for facial expression recognition,” Proc. - 2017 IEEE Int. Conf. Innov. Intell. Syst. Appl. INISTA 2017, pp. 371–375, 2017, doi: 10.1109/INISTA.2017.8001188.
  38. A. E. Ebitigha, O. O. Ajayi, O. D. Akinrolabu, A. Adegbite, J. Obafemi, and J. K. Ogunleye, “Facial Appearance Analysis for Age Group Prediction Using Convolutional Neural Network,” in International Conference on Science, Engineering and Business for Driving Sustainable Development Goals, 2024.
  39. L. C. Hon and K. D. Varathan, “Cyberbullying Detection System on Twitter,” pp. 1–11, 2015, [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.740.1582&rep=rep1&type=pdf
  40. Y. Liu, C. Kliman-silver, and A. Mislove, “The Tweets They are a-Changin ’: Evolution of Twitter Users and Behavior,” in Proceedings of the International Association for the Advancement of Artificial Intelligence Conference on Web and Social Media, 2014, pp. 5–15.
  41. J. C. Pereira-Kohatsu, L. Quijano-Sánchez, F. Liberatore, and M. Camacho-Collados, “Detecting and monitoring hate speech in twitter,” Sensors (Switzerland), vol. 19, no. 21, pp. 1–37, 2019, doi: 10.3390/s19214654.
  42. B. Dean, “New Twitter.” Accessed: Apr. 13, 2021. [Online]. Available: https://backlinko.com/twitter-users#daily-active-users
  43. Turbofuture.com, “Cyberbullying on Social Media (What It Is and How to Avoid It) - TurboFuture.” Accessed: Apr. 13, 2021. [Online]. Available: https://turbofuture.com/internet/Cyberbullying-and-Social-Media
  44. V. Balakrishnan, S. Khan, and R. A. Hamid, “Improving Cyberbullying Detection using Twitter Users’ Psychological Features and Machine Learning,” Comput. Secur., p. 101710, 2019, doi: 10.1016/j.cose.2019.101710.
  45. D. Chatzakou et al., “Detecting Cyberbullying and Cyberaggression in Social Media ∗,” ACM Trans. Web, vol. 13, no. 3, 2017.
  46. C. Nobata and J. Tetreault, “Abusive Language Detection in Online User Content,” in Proceedings of the 25th international conference on World Wide weW, International World Wide Web Conferences Steering Committee, 2016, pp. 145–153.
  47. M. A. Al-garadi, M. A. Al-garadi, M. R. Hussain, and N. Khan, “Predicting Cyberbullying on Social Media in the Big Data Era Using Machine Learning Algorithms : Review of Literature and Open Challenges,” IEEE Access, vol. PP, no. May, p. 1, 2019, doi: 10.1109/ACCESS.2019.2918354.
  48. R. Zhao, A. Zhou, and K. Mao, “Automatic Detection of Cyberbullying on Social Networks based on Bullying Features,” in Proceedings of the 17th international conference on distributed computing and networking, ACM, 2016, pp. 1–6.
  49. Y. Chen, Y. Zhou, S. Zhu, and H. Xu, “Detecting Offensive Language in Social Media to Protect Adolescent Online Safety,” Int. Conf. 2012 Int. Confernece Soc. Comput. (SocialCom, pp. 71–80, 2012, doi: 10.1109/SocialCom-PASSAT.2012.55.
  50. S. M. Isa and L. Ashianti, “Cyberbullying Classification using Text Mining,” in 1st International Conference on Informatics and Computational Sciences (ICICoS), IEEE, 2017, pp. 241–246.
  51. R. Sugandhi, A. Pande, A. Agrawal, and H. Bhagat, “Automatic Monitoring and Prevention of Cyberbullying Automatic Monitoring and Prevention of Cyberbullying,” Int. J. Comput. Appl., vol. 144, no. 8, pp. 17–19, 2016, doi: 10.5120/ijca2016910408.
  52. B. Irena and E. B. Setiawan, “Fake News (Hoax) Identification on Social Media Twitter using Decision Tree C4.5 Method,” RESTI J. (System Eng. Inf. Technol., vol. 4, no. 4, pp. 711–716, 2021, doi: 10.29207/resti.v4i4.2125.
  53. M. A. Al-garadi, K. D. Varathan, and S. D. Ravana, “Computers in Human Behavior Cybercrime detection in online communications : The experimental case of cyberbullying detection in the Twitter network,” Comput. Human Behav., vol. 63, pp. 433–443, 2016, doi: 10.1016/j.chb.2016.05.051.
  54. M. Wang, H. Li, M. S. Hospital, W. Jiang, and Q. Liu, “gen CNN: A Convolutional Architecture for Word Sequence,” in In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Beijing: Association for Computational Linguistics., 2015, pp. 1567–1576. doi: 10.3115/v1/P15-1151.
  55. M. A. Al-Ajlan and M. Ykhlef, “Deep Learning Algorithm for Cyberbullying Detection,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 9, pp. 199–205, 2018.
  56. X. Zhang, J. Zhao, and Y. Lecun, “Character-level convolutional networks for text classification,” Adv. Neural Inf. Process. Syst., vol. 2015-Janua, pp. 649–657, 2015.
  57. R. Johnson and T. Zhang, “Effective use of word order for text categorization with convolutional neural networks,” NAACL HLT 2015 - 2015 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. Proc. Conf., no. 2011, pp. 103–112, 2015, doi: 10.3115/v1/n15-1011.
  58. P. R. Vardhani, Y. I. Priyadarshini, and Y. Narasimhulu, “CNN Data Mining Algorithm for Detecting Credit Card Fraud,” SpringerBriefs Appl. Sci. Technol., pp. 85–93, 2019, doi: 10.1007/978-981-13-0059-2.
  59. R. Dai, “Text Data Mining Algorithm Combining CNN and DBM Models,” Mob. Inf. Syst., vol. 2021, pp. 1–7, 2021.
  60. J. Peng and S. Huo, “Application of an Improved Convolutional Neural Network Algorithm in Text Classification,” J. Web Eng., vol. 23, no. 03, pp. 315–340, 2024, doi: 10.13052/jwe1540-9589.2331.
Index Terms

Computer Science
Information Sciences
Machine Learning
Deep Learning
Cybersecurity
Pattern Recognition
Social Media Analysis

Keywords

Cyberbullying Detection Convolutional Neural Networks (CNN) Real-time Detection Text Classification Online Safety