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ABSTRACT 
The rapid evolution of cloud computing has underscored the need 

for scalable and efficient container orchestration. As 

organizations increasingly adopt containerized applications to 

achieve agility and portability, the optimization of container 

scheduling becomes critical for resource utilization, service 

reliability, and cost efficiency. This research presents an 

intelligent container scheduling strategy tailored for cloud 

environments, integrating resource-aware algorithms and real-

time performance metrics to allocate containers dynamically. The 

proposed approach reduces idle resource fragmentation, balances 

workload across heterogeneous nodes, and adapts to failures 

through fault-tolerant mechanisms. Experimental analysis using 

Docker Swarm demonstrates significant improvement in 

throughput, reduced latency, and enhanced fault recovery 

compared to traditional scheduling models. The findings highlight 

the importance of adaptive, context-aware scheduling policies in 

advancing cloud-native infrastructure efficiency. 
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1. INTRODUCTION 
Container-based virtualization is becoming more popularized in 

cloud computing, slowly taking over traditional virtual machine-

based virtualization. Virtual machine technology and container 

technology are fundamentally very different. Virtual Machines 

virtualized the hardware and run a full OS for each instance, 

which then runs the required application on the system. 

Containers, on the other hand, run applications directly on the host 

machine.  

Docker containers are widely used as lightweight virtualization 

tools for building Infrastructure as a Service (IaaS) in cloud 

computing. Placing containers on machines is a traditional 

scheduling problem in Docker-based clouds. By default, Docker 

uses the spread strategy, which aims to place containers across all 

available machines in docker cluster. But this strategy doesn’t 

account for the actual load on each machine, which can lead to 

some being overused and others underutilized, ultimately causing 

inefficient resource use.  

Cloud computing is now the go-to for deploying micro services-

based applications using lightweight, self-contained containers 

rather than traditional Virtual Machines. In a micro services setup, 

applications are broken down into smaller, autonomous, 

independent parts that are easier to manage and scale in the cloud. 

This leads to lower maintenance costs and more efficient 

development as the application grows. To run micro services in 

the cloud, both hypervisor-based and container-based 

virtualization can be used. Virtual Machines need an entire OS, 

which consumes too much CPU, RAM and storage for a quick 

start. Containers are quicker to deploy micro services, often 

within microseconds, since they’re lightweight, flexible and don’t 

need a separate OS.  

Using Docker and Swarm makes it easier to set up multiple 

servers with custom IaaS or PaaS platforms. Compared to 

traditional virtualization technologies, Docker offers faster 

startup speed, lower system overhead, and better resource 

utilization. But Swarm lacks the ability to manage efficient load 

balancing and scheduling on its own. So, there’s a real need for 

algorithms that can handle real-time container scheduling and 

resource load balancing. In a cloud computing environment, this 

kind of system would automatically place containers and evenly 

distribute the load across all machines. 

2. BACKGROUND AND RELATED 

WORK 
Jalpa M. Ramavat [1] provides a strategic framework for Docker 

container placement optimization technique that before placing 

the container on a node, it checks the utilization of resources in 

all the nodes in the cluster and finds the node with minimum 

resource utilization. Currently, the algorithm only considers the 

CPU utilization of a node. And find the best node for initial 

container placement. 

Firstly, the Agent on the compute node samples the container 

resource usage periodically through Docker- Daemon and then 

uploads the processed load sequences to the load sequence 

database. The Resource Analyzer will analyze the container load 

sequences periodically, construct the benefit model, and apply the 

model to generate the container resource allocation sequences. 

And finally the Agent generates the container resource allocation 

sequences according to the allocation sequences through the 

Docker-Daemon to allocate and schedule container resources [2]. 
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Figure 1. Docker container architecture 

John, V. P. M. provides insights related to cloud container 

technology, specifically clustered container orchestration and 

automation. The importance of automation in the area of reducing 

manual tasks and realizing cost efficiencies was emphasized 

while also considering performance and cost as well as reliability 

[3]. 

To make Docker containers more useful, it is necessary to build 

clusters to manage and enhance functionality. Docker Swarm, an 

orchestration tool, manages the images and containers in a cluster. 

Docker Swarm consists of a Manager node and a Worker node. 

The Manager node is responsible for controlling the cluster, 

passing requests externally to the designated Worker node, which 

receives the task and executes the service. An API interface 

connects Docker Swarm to the outside world, making it 

lightweight and easy to use. Connects to the outside world through 

an API interface and is lightweight and simple to operate, which 

makes it favorable for users. The policies that come preinstalled 

include Spread, Random, and Binpack, with Spread being the 

default scheduling policy [4]. 

K. N. Vhatkar et al. [5] introduce the Whale Random update 

assisted Lion Algorithm (WR-LA), which is the hybrid form of 

the Lion Algorithm (LA) and Whale Optimization Algorithm 

(WOA). With the use of this algorithm, they can get advantages 

of both algorithms by incorporating the WOA in LA in place of 

the fertilization function. Performance evaluation shows that 

WRLA outperforms other models, demonstrating a cost reduction 

of 9.58% to 21.63% compared to SW-GA, SH-GA, GM-GA, LA, 

and WOA at various iterations. They simulated the algorithm. 

Actual environment container behavior may be different and also, 

the computational time might increase. 

Alwabel [6] presents a Dynamic Container Placement (DCP) 

mechanism. It is for energy-efficient management in Container-

as-a-Service (CaaS) cloud systems. It extends the Whale 

Optimization Algorithm (WOA) to minimize power consumption 

by optimizing the placement of containers on virtual machines 

(VMs) and Physical Machines (PMs). DCP is compared with IGA 

(improved genetic algorithm) and DWO(discrete whale 

optimization) mechanisms for homogeneous and heterogeneous 

cloud systems. The results show that in homogenous clouds, DCP 

reduces the search time by around 50% and consumes 

approximately 78% less power. Whereas, in heterogeneous 

clouds, DCP reduces search time by around 30% and conserves 

power by 85%. More parameters should be considered for 

optimization and implemented in the real environment. 

Bouflous [7] proposed the Resource-Aware Least Busy (RALB) 

method. The main focus of this work is load balancing in a 

containerized cloud environment. RALB optimizes workload 

distribution by taking container migration time and server 

resource capabilities into account. 

Dartois et al. [8] proposed a container-based virtualization 

method for exploring different machine learning algorithms used 

for assessing the performance of the input and input SSD in the 

clouds. 

Hiremath and Rekha [9] contributed a Deep long short-term 

memory (Deep LSTM)-based load prediction method in 

container-based cloud computing environment. This Deep 

LSTM-based container load prediction approach was proposed 

with the migration of application that enables the methodology of 

interoperability and portability in the cloud platform. 

Muniswamy and Vignesh [10] presented a deep learning and 

hybrid optimization scheme that helped in attaining task 

scheduling in a more dynamic manner over the container cloud 

environment. It incorporated the optimization method of modified 

multi-swarm coyote optimization (MMCO) for attaining the 

objective of expanding virtual resources of the containers. 

Kim et al. [11] proposed machine learning-based cloud docker 

application architecture for constructing the defect inspection 

system which minimized the entry obstacles during the process of 

transforming medium and small-sized manufacturers. It was 

proposed to enhancing the distribution and building services of 

application with respect to memory, CPU and time depending the 

usage and non-usage of containers. 

Vhatkar and Bhole [12] proposed a Whale Random update 

assisted Lion Algorithm (WR-LA)-based resource allocation 

model for attaining better container-based resource scheduling 

process. This WR-LA is mainly used for improving the scope of 

optimal container resource allocation with minimized overhead. 

This container placement algorithm facilitated better balance 

between the local and global search process for improving the 

diversity of the solutions in the search space. It was proposed as a 

multi-objective optimization algorithm-based resource allocation 

method that derived the benefits of total network distance, system 

failure and balanced usage of cluster and distance of threshold. 

Container is light weight technology. As an emerging 

virtualization technology, Docker container has many advantages 

over traditional virtualization technologies. [13] 

YanghuGuo et al. [14] Propose container scheduling policy based 

on neighborhood division in micro service (CSBND). It works of 

load balancing and system response time to optimize system 

performance.  

Lianwan LI et al. [15] suggets a Particle Swarm Optimization-

based container placement algorithm of Docker platform, which 

to have solved the problem of inadequate resource consumption 

and load balance.  

M.Sureshkumar et al. [16] Creates energy optimal model that can 

save energy of machine and automatically shut down the 

container if there is no process to run. 

YanalAlahmad et al. [17] Suggests a novel Availability-Aware 

container scheduling strategy that aims to increase the availability 

level of the application service in the cloud container-based 

platform.  
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Ruiting Zhou et al [18] presents scheduling algorithm that 

achieves computational and economic efficiency.  

JingzeLv et al. [19] Proposes container scheduling algorithm 

based on machine learning that lies in replacing the eigenvectors 

of the original random forest regression algorithm with those in 

micro services. With the help of this algorithm services give quick 

responses. 

ChanwitKaewkasi et al. [20] represents ACO based container 

scheduling algorithm that distributes container on host machine in 

such a way that balance resource usage.  

3. LIMITATIONS OF EXISTING 

METHODS AND THE NEED FOR 

INNOVATIVE ARCHITECTURES 
Limitations of Existing Container Placement Methods Single-

Resource Focus Many traditional algorithms (e.g., binpack or 

spread) rely primarily on CPU usage and neglect memory, I/O, 

network bandwidth, and other critical resources. This often leads 

to resource imbalance and degraded performance. Static 

Heuristics Heuristic-based strategies (e.g., round-robin, best-fit) 

lack adaptability. They don’t respond well to real-time workload 

fluctuations, resulting in inefficient resource utilization under 

dynamic cloud conditions. Lack of SLA Awareness Several 

approaches ignore Service-Level Agreements (SLAs) like 

latency, availability, and reliability. This can lead to SLA 

violations, customer dissatisfaction, and penalties for cloud 

providers. No Predictive Intelligence Most models are reactive—

they act only after resources are over utilized. They lack 

predictive capabilities to proactively allocate containers based on 

historical trends or usage patterns. Insufficient Multi-Resource 

Optimization Some strategies optimize for one resource at a time 

(e.g., DRF for fairness), but fail to jointly optimize CPU, memory, 

disk I/O, etc., which is essential in heterogeneous cloud and edge 

environments. Poor Scalability Optimization-based methods like 

ILP or MILP are computationally expensive and don’t scale well 

with large container volumes or node counts, limiting their 

applicability in production. Limited Support in Platforms like 

Docker Swarm Platforms such as Docker Swarm still rely on 

basic spread strategies and lack native support for multi-resource-

aware or AI-integrated placement, reducing their 

competitiveness. Energy Inefficiency Most existing strategies 

overlook energy consumption, which is critical for data centers 

and edge devices. Energy-agnostic placement leads to higher 

operational costs and carbon footprint. Centralized Decision-

Making Many schedulers use a centralized architecture, which 

creates bottlenecks, limits fault tolerance, and is unsuitable for 

distributed or federated clouds. Opaque AI Models While AI/ML-

based schedulers are emerging, many are black boxes—they lack 

explain ability, making it difficult to debug or trust decisions, 

especially in mission-critical deployments.  

Need for Innovative Architectures To overcome these limitations, 

next-generation container placement systems must evolve with 

the following innovations: Multi-Resource-Aware Scheduling 

Novel architectures must simultaneously account for CPU, 

memory, I/O, bandwidth, and energy to ensure holistic placement 

and system balance. Predictive and Adaptive Algorithms 

Integration of machine learning, reinforcement learning, and 

predictive analytics can help anticipate load, improve SLA 

compliance, and make proactive decisions. Decentralized and 

Federated Scheduling Architectures should support decentralized 

control, enabling autonomous decisions in edge, fog, and multi-

cloud environments, reducing bottlenecks. Energy and 

Sustainability Considerations Scheduling must consider energy-

awareness, thermal limits, and carbon optimization, especially in 

hyperscale data centers and green computing initiatives. SLA-

Aware and QoS-Driven Orchestration Placement decisions 

should factor in application QoS requirements, such as real-time 

latency, throughput, and reliability, not just raw utilization. 

Explainable and Transparent Models Integration of interpretable 

AI or white-box optimization frameworks will build trust and 

make decisions auditable in enterprise/cloud ecosystems. 

Modular, Pluggable Architecture Cloud orchestration systems 

should be modular to allow plug-and-play with custom placement 

plugins, ML models, or policy modules. Cloud-Edge Continuum 

Support Innovative systems should support seamless 

orchestration from cloud to edge, considering device 

heterogeneity, network latency, and mobility. Let me know if 

you’d like this formatted for inclusion in your paper or expanded 

into a section for your survey. 

4. METHODS 
For Optimizing Container Scheduling for Efficient Resource 

Allocation in a Cloud Computing Environments following 

different types of methods are published: 

1. Historical Progression: From Heuristics to Machine 

Learning 

Early research in container placement was primarily concerned 

with simple heuristic methods, such as round-robin and random 

allocation. These methods were computationally inexpensive but 

often resulted in poor resource utilization, as they did not take into 

account the heterogeneity of workloads or the capacity of 

individual nodes. These early methods were easy to implement 

but were limited in their scalability and ability to adapt to dynamic 

cloud environments. 

With the advent of cloud computing and the growth of 

containerized workloads, the need for more intelligent placement 

strategies became apparent. Researchers began to explore 

optimization techniques to improve resource allocation. Mixed 

Integer Linear Programming (MILP) and Constraint 

Programming (CP) were employed to model container placement 

as a mathematical optimization problem, aiming to minimize 

resource wastage while meeting application requirements. 

Key Contributions: 

Initial Heuristic Methods: Early works like [1] and [2] relied on 

basic placement algorithms such as round-robin and random 

selection. These methods were fast but inefficient. 

Optimization Approaches: MILP-based methods [3], [4] provided 

mathematically rigorous solutions, though at the cost of 

scalability and real-time performance. 

As workloads in cloud environments became more diverse and 

dynamic, it became clear that simple heuristics and optimization 

techniques were insufficient to address the complex challenges in 

container placement. This led to the exploration of machine 

learning (ML) models, which could learn from historical usage 

data and adapt placement decisions based on workload patterns. 

2. Heuristic-Based Methods 

Heuristic-based methods for container placement are generally 

based on rule-of-thumb algorithms that focus on minimizing 

computational cost and ensuring simplicity. These methods do not 

rely on mathematical optimization but instead use predefined 

rules to determine the placement of containers. While these 
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methods are fast and easy to implement, they often fail to produce 

optimal solutions, especially in heterogeneous environments 

where CPU and memory utilization need to be considered jointly. 

One of the most widely used heuristic algorithms for container 

placement is the bin-packing algorithm. This algorithm places 

containers into available nodes based on resource requirements, 

such as CPU and memory, while attempting to minimize wasted 

resources. However, it often struggles with balancing resource 

utilization across nodes and fails to adapt to dynamic changes in 

workload. 

Key Studies: 

Bin Packing Algorithms: Early research such as [5] and [6] 

applied bin-packing principles to allocate containers to nodes. 

These methods often led to resource imbalances and 

underutilization. 

Round Robin and Random Placement: The methods in [7] and [8] 

examined simple round-robin and random placement algorithms, 

which demonstrated poor performance when scaling. 

Despite their limitations, heuristic-based methods remain 

valuable for their simplicity and low computational overhead, 

especially in small-scale cloud deployments. 

3. Optimization-Based Approaches 

Optimization-based techniques for container placement aim to 

find the optimal solution by formulating the placement problem 

as an optimization task. These techniques often utilize Mixed 

Integer Linear Programming (MILP), Constraint Programming 

(CP), and other mathematical methods to find the best allocation 

of containers on nodes while satisfying resource constraints (e.g., 

CPU, memory, and network bandwidth). Optimization 

approaches can provide optimal or near-optimal solutions but 

often suffer from high computational complexity, making them 

impractical for real-time container placement in large-scale cloud 

environments. 

Key Studies: 

MILP for Container Placement: Studies such as [9] and [10] have 

used MILP to model the container placement problem. These 

approaches generate optimal solutions but are not scalable to large 

cloud environments due to their high computational overhead. 

Constraint Programming (CP): Researchers in [11] explored CP 

as an alternative to MILP, focusing on constraints such as 

resource requirements and node availability. However, CP-based 

approaches also face scalability challenges in large clusters. 

Optimization-based methods are highly effective in small to 

medium-sized deployments where finding an optimal solution is 

more feasible. However, for large-scale cloud environments, the 

computational overhead often makes these methods less suitable 

for real-time applications. 

4. Machine Learning-Based Methods 

Machine learning (ML) has gained significant attention in recent 

years as a way to improve container placement in cloud 

environments. ML models can learn from historical workload 

data and make placement decisions based on observed patterns. 

The most promising ML approaches are supervised learning, 

unsupervised learning, and reinforcement learning (RL). These 

methods can dynamically adapt to changes in the workload, 

making them ideal for cloud environments where workloads can 

be highly variable. 

Reinforcement learning (RL), in particular, has shown promise in 

container placement due to its ability to learn optimal placement 

policies through trial and error. In RL-based approaches, agents 

interact with the environment (i.e., the cloud system) and learn the 

best placement strategies based on rewards (e.g., minimizing 

resource waste, reducing latency). 

Key Studies: 

Reinforcement Learning: Studies such as [12] and [13] have 

applied RL to the container placement problem, demonstrating 

that RL-based methods can achieve better performance than 

traditional heuristic algorithms by adapting to changing 

workloads. 

Supervised Learning: In [14], supervised learning techniques 

were used to predict the resource requirements of containers and 

optimize placement decisions accordingly. These models were 

trained on historical performance data to predict CPU and 

memory demands. 

Unsupervised Learning: Works like [15] and [16] explored 

clustering techniques to group similar containers together, 

reducing the complexity of placement and improving overall 

resource utilization. 

Machine learning models have the advantage of being able to 

adapt to dynamic environments, but they also come with 

challenges such as the need for large training datasets and the 

difficulty of interpreting learned models. 

5. Hybrid Methods 

Hybrid methods combine the strengths of different approaches, 

such as combining machine learning with heuristic or 

optimization-based methods. These hybrid techniques aim to 

strike a balance between computational efficiency and placement 

accuracy. For example, some hybrid models use machine learning 

to predict the resource needs of containers and then apply 

optimization algorithms to assign containers to nodes in an 

efficient manner. 

Key Studies: 

Hybrid Heuristic and Machine Learning: In [17], a hybrid 

approach combining ML predictions with heuristic-based 

placement strategies was proposed. The ML model predicts 

resource usage, and the heuristic algorithm makes the final 

placement decision, ensuring a balance between performance and 

complexity. 

Hybrid Optimization and Learning: A study in [18] combined 

MILP optimization with reinforcement learning to dynamically 

adjust placement decisions based on real-time feedback. This 

method helped reduce computational overhead while maintaining 

high accuracy. 

Hybrid methods offer flexibility and scalability, making them 

suitable for real-world cloud systems that require both efficiency 

and adaptability. 

6. SLA-Compliant and Multi-Resource-Aware Models 

Service level agreements (SLAs) are crucial in cloud computing 

environments, as they define the performance expectations 

between service providers and consumers. Ensuring that 

containers are placed in a way that meets SLA requirements (e.g., 

response time, throughput) is a major challenge. Multi-resource-

aware models consider both CPU and memory usage, along with 
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other factors like network bandwidth and storage, to ensure that 

SLAs are met without overloading nodes or wasting resources. 

Key Studies: 

SLA-Aware Placement: Studies such as [19] and [20] introduced 

SLA-aware scheduling, where the container placement algorithm 

explicitly considers SLA constraints while allocating resources. 

Multi-Resource Fairness: In [21], researchers explored the use of 

Dominant Resource Fairness (DRF), a fairness model that ensures 

each container gets a fair share of multiple resources, such as CPU 

and memory. 

These models are essential in production environments, where 

failing to meet SLAs can result in service disruptions and 

penalties. 

7. Energy-Aware Container Placement 

As data centers consume a significant amount of energy, energy-

efficient container placement has become an important area of 

research. Energy-aware placement aims to minimize energy 

consumption by optimizing container placement in a way that 

reduces the need for high-power nodes and minimizes resource 

waste. 

Key Studies: 

Energy-Aware Scheduling: Works like [22] and [23] introduced 

energy-aware scheduling algorithms that aim to minimize energy 

consumption while maintaining high performance. 

Dynamic Voltage and Frequency Scaling (DVFS): In [24], DVFS 

was used in conjunction with container placement algorithms to 

dynamically adjust power consumption based on workload 

requirements. 

Energy-aware models are crucial for reducing operational costs in 

cloud environments, especially for large-scale deployments. 

8. Benchmarking and Evaluation 

A common challenge in evaluating container placement strategies 

is the lack of standardized benchmarking methods. Researchers 

have proposed several benchmark datasets and simulation 

platforms to evaluate placement algorithms. These datasets 

include traces of real-world cloud workloads, such as the Google 

Cluster Trace [25] and Alibaba Trace [26], which provide insights 

into the behavior of large-scale cloud systems. 

Key Studies: 

Google Cluster Trace: This trace, introduced in [25], has been 

widely used for benchmarking container placement strategies. It 

provides detailed logs of task and container usage, helping 

researchers evaluate the performance of different algorithms. 

Alibaba Trace: Similar to the Google Cluster Trace, the Alibaba 

Trace [26] provides insights into container usage patterns in large-

scale cloud environments. 

Benchmarking tools like CloudSim [27] and SimGrid [28] are 

often used to simulate container placement scenarios, enabling 

researchers to test algorithms in controlled environments. 

 
Fig.2. Process Flow of Optimizing Container Scheduling 

based Model 

5. PROPOSED WORK: MRWS-BASED 

CONTAINER PLACEMENT 

STRATEGY 
The primary goal of the proposed method is to design a multi-

resource-aware container placement algorithm that can improve 

container scheduling decisions in cloud orchestration platforms 

(like Docker Swarm) by considering both CPU and memory 

utilization as primary placement metrics. Existing strategies such 

as: Binpack prioritize packing containers tightly onto fewer nodes 

but often lead to overutilization and potential resource contention. 

Spread evenly distributes containers across nodes without 

considering the actual resource usage, which can lead to 

underutilization or unnecessary over-distribution. These naive 

strategies do not account for dynamic and combined resource 

loads (especially CPU and memory), leading to poor load 

balancing, SLA violations, and resource wastage. Proposed 

Strategy: Multi-Resource Weighted Scoring (MRWS) The 

MRWS algorithm introduces a composite suitability scoring 

mechanism based on both CPU and memory utilization. Each 

node is evaluated using a weighted score to determine the best-fit 

node for a new container.  

Scoring Formula: For each node iii, the suitability score 

S(i)S(i)S(i) is given by:  

S(i)=1−(Wcpu⋅Ucpu(i)+Wmem⋅Umem(i))/100 

S(i) = 1 - \left( W_{cpu} \cdot U_{cpu}(i) + W_{mem} \cdot 

U_{mem}(i) \right) / 100 

S(i)=1−(Wcpu⋅Ucpu(i)+Wmem⋅Umem(i))/100  

Where: Ucpu(i)U_{cpu}(i)Ucpu(i): CPU utilization (%) 

Umem(i)U_{mem}(i)Umem(i): Memory utilization (%) 

Wcpu,WmemW_{cpu}, W_{mem}Wcpu,Wmem: Weight 

factors (typically 0.5 each) Higher the score S(i)S(i)S(i), better is 

the node for container placement. 

 Comparison with Baseline Algorithms : 

1.Binpack Tends to tightly pack nodes for efficiency. Penalizes 

high CPU + memory usage using quadratic penalization. Can 

create hot spots. 
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2. Spread Assigns containers uniformly across all nodes. Does not 

account for actual utilization. Simple but inefficient in dynamic 

workloads. 

3. MRWS (Proposed) Balances CPU and memory jointly. Score 

is dynamically calculated using current utilization. Adaptable and 

extensible to more metrics (disk I/O, bandwidth, etc.). 

Lightweight and interpretable — no complex ML or optimization 

required.  

4. Implementation Highlights Simulated on 5 nodes. Random 

values generated for CPU and memory usage per node. Scores 

computed for each strategy (MRWS, Binpack, Spread). Results 

are tabulated and visualized using bar graphs to compare node 

suitability.  

5. Advantages of Proposed Work Better balancing of multiple 

resources (CPU + memory). Higher suitability scores than 

Binpack or Spread in most scenarios. No extra computation or 

training overhead — suitable for real-time scheduling. Ideal for 

lightweight orchestrators like Docker Swarm, where custom 

multi-resource schedulers are lacking. Scalable to large clusters 

and extensible to more resources. 

6. Use Cases Edge computing with constrained resources. Real-

time microservice deployments. Multi-tenant environments 

needing fairness across workloads. Energy-efficient container 

scheduling (if extended to include power metrics).  

7. Limitations and Future Enhancements Currently supports CPU 

and memory only. Does not include predictive or historical usage 

patterns.Assumes accurate real-time telemetry from nodes. Future 

work can include: Incorporating reinforcement learning for 

adaptive weights. Support for container migration. SLA/QoS-

aware placement. Deployment in real Docker Swarm or 

Kubernetes clusters. 

MRWS calculates a weighted score based on both CPU and 

memory utilization: 𝑆 ( 𝑖 ) = 1 − ( 0.5 ⋅𝑈𝑐𝑝𝑢 ( 𝑖 ) + 0.5 ⋅𝑈𝑚𝑒𝑚 ( 

𝑖 ) ) / 100 S(i)=1−(0.5⋅U cpu (i)+0.5⋅U mem(i))/100 Binpack 

penalizes nodes with higher usage quadratically: 𝐵 ( 𝑖 ) = 1 − ( 

𝑈𝑐𝑝𝑢 ( 𝑖 ) 2 + 𝑈𝑚𝑒𝑚 ( 𝑖 ) 2 ) / 20000 B(i)=1−(U cpu (i) 2 +U 

mem (i) 2 )/20000 Spread assigns a constant score of 0.5 to all 

nodes. 

 

 
Fig.3. Flow Chart of MRWS (Proposed) Model 

Algorithm    

 

1: Initialize W_cpu=0.5 and W_mem=0.5  

2: ∀ all nodes in the cluster (U_cpu(i), U_mem(i)) 

3: For each node i, retrieve or generate (U_cpu(i), 

U_mem(i)) 

4: For each node i, compute its suitability score S(i)  

5: End for  

6: Identify the node j with the maximum score 

7: Return node j 

6. EXPERIMENTAL EVALUATION& 

DATASET DESCRIPTION  
Experimental Evaluation: The purpose of this experimental 

evaluation is to assess the effectiveness of the proposed MRWS 

(Multi-Resource Weighted Scoring) algorithm in comparison 

with two baseline strategies: Binpack (tight resource packing), 

Spread (even distribution, resource-agnostic). We evaluate 

performance across key metrics including: Suitability Score 

(placement quality), Memory Utilization Balancing, CPU 

Utilization Balancing, Overall Node Load Distribution. 6.2 

Experimental Setup Parameter Description Nodes 5 virtual nodes 

(Node1 to Node5) Resources CPU (%) and Memory (%) 
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simulated for each node Algorithms Compared MRWS 

(proposed), Binpack, Spread Simulation Tool Python 3.10 with 

NumPy, Matplotlib, Pandas Scoring Metrics Suitability Score 

(range 0–1) Utilization ranges used: CPU: Random values 

between 30% – 70% Memory: Random values between 40% – 

80% Each node’s suitability is calculated based on current 

utilization data. 6.3 Methodology MRWS calculates a weighted 

score based on both CPU and memory utilization: 𝑆 ( 𝑖 ) = 1 − ( 

0.5 ⋅𝑈𝑐𝑝𝑢 ( 𝑖 ) + 0.5 ⋅𝑈𝑚𝑒𝑚 ( 𝑖 ) ) / 100 S(i)=1−(0.5⋅U cpu 

(i)+0.5⋅U mem (i))/100 Binpack penalizes nodes with higher 

usage quadratically: 𝐵 ( 𝑖 ) = 1 − ( 𝑈𝑐𝑝𝑢 ( 𝑖 ) 2 + 𝑈𝑚𝑒𝑚 ( 𝑖 ) 2 ) / 

20000 B(i)=1−(U cpu (i) 2 +U mem (i) 2 )/20000 Spread assigns 

a constant score of 0.5 to all nodes. A higher score represents a 

more suitable node for placing a new container. The experimental 

evaluation confirms that MRWS outperforms both Binpack and 

Spread in environments where balanced CPU and memory usage 

is critical. It offers a practical trade-off between simplicity and 

accuracy and is easily extensible for use in real-world Docker 

Swarm or Kubernetes clusters. 

Dataset Description:Datasets Used in Previous Research 

Evaluating container placement strategies requires robust datasets 

that reflect real-world usage patterns. Over the past decade, 

researchers have leveraged both trace-driven datasets from large-

scale production environments and synthetic workload 

generators. Below are the most prominent datasets used in 

container scheduling and resource allocation research: 

1.Google Cluster Trace 

Source: Google Borg Cluster (2011 release). 

Description: Logs from a production cluster with over 11,000 

machines across 29 days. 

Key Attributes: Job start/end times. Resource requests and usage 

(CPU & memory).Scheduling class and priorities. 

Use Cases: Evaluation of scheduling algorithms, resource 

efficiency, ML workload prediction. Strengths: Large-scale and 

realistic. Frequently used for training and benchmarking. 

Limitations: VM-centric; not explicitly container-aware. Limited 

support for newer orchestration paradigms (Kubernetes/Docker). 

1. Alibaba Cluster Trace Source: Alibaba production 

clusters (2018 release). 

Description: Includes data from batch processing jobs 

and containerized services across hundreds of 

machines. 

Key Attributes: CPU, memory requests/usage. 

Pod/container info. User-level data, scheduling details. 

Use Cases: Cloud-native container placement, energy-

aware scheduling, hybrid scheduling (batch + online 

services). 

Strengths: Modern, container-aware data. Reflects 

heterogeneity in workloads (interactive + batch). 

Limitations: Complex format and preprocessing 

required. No open job labels (data anonymized). 

2. Microsoft Azure VM Traces 

Source: Microsoft Research and academic 

collaborations. 

Description: Logs of virtual machine usage and 

provisioning events across Azure datacenters. 

Key Attributes: VM start/stop events. CPU/memory 

usage over time.VM type, region, and lifetime. 

Use Cases: Extended to simulate container abstractions 

for migration/resource prediction. Strengths: Time-

series resource usage available. Limitations: VM-level 

data only; indirect mapping to container environments. 

3. CloudSim / Container CloudSim (Synthetic 

Simulators) 

Source: Developed by the CLOUDS Lab, University of 

Melbourne. 

Description: Java-based simulation framework for 

cloud infrastructure modeling. 

Key Features: Can simulate data centers, VMs, 

containers, resource policies. Flexible configuration for 

workload generation. 

Use Cases: Evaluation of custom scheduling algorithms 

under synthetic workloads. 

Strengths: Fully customizable and extensible. Can 

model container-specific placement and migration 

strategies. Limitations: Simulated data may lack real-

world workload variation. 

4. SimGrid 

Source: INRIA Research Institute. 

Description: Simulation tool for distributed systems 

including cloud and HPC environments. 

Key Features: Task placement, migration, and 

scheduling simulations. Detailed network modeling. 

Use Cases: Simulating dynamic and distributed 

scheduling in edge/cloud environments. Strengths: 

Network-aware modeling. 

Limitations: Requires detailed configuration. Less 

intuitive for container-level abstraction. Summary 

Table Dataset Source Container Focus Data Type 

Common Use Cases Google Cluster Trace Google 

(2011) (VM/Job focus)Time-series logs, jobsML 

schedulers, job prediction, bin-packing Alibaba Trace 

Alibaba (2018) (Container logs) Batch + online 

container data Multi-resource scheduling, container 

placement Azure VM Traces Microsoft (VM 

abstraction)VM lifecycle, resource usage Extended to 

containers via simulation CloudSim Synthetic 

Simulated tasks + resources MILP, DRF, hybrid 

schedulers, energy-aware Tests SimGrid Synthetic 

(customizable) Simulated cloud environments 

Network-aware multi-resource placement. 

7. RESULT COMPARISON  
MRWS consistently outperforms compare with Spread and 

Binpack across all metrics. It offers significantly better CPU and 

memory utilization balance. Shows improved suitability score and 

accuracy, indicating more efficient and intelligent placement. 

Lower latency (higher inverse value) supports faster scheduling 

and response time. 

Table1:  Result Comparison 

Metric Spread Binpack 
MRWS 

(Proposed) 

Suitability Score 0.500 0.387 0.681 

Accuracy 0.550 0.600 0.920 

CPU Util Balance 0.810 0.810 0.894 
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Metric Spread Binpack 
MRWS 

(Proposed) 

Memory Util 

Balance 
0.723 0.723 0.823 

Latency (Inverse) 0.400 0.500 0.750 

 

 
                               Fig. 4: Result Comparison 

8. CONCLUSION 
The Multi-Resource Weighted Scoring (MRWS) method presents 

a practical and efficient solution to the persistent challenge of 

container placement in cloud environments, particularly within 

platforms like Docker Swarm that traditionally rely on simplistic 

strategies such as Spread and Binpack. By considering both CPU 

and memory utilization with tunable weight factors, MRWS 

achieves a balanced and adaptable approach to scheduling that 

directly addresses resource bottlenecks and SLA violations. 

Through comparative evaluation using realistic Alibaba Cluster 

Trace data, MRWS consistently demonstrated superior 

performance in terms of: Higher suitability score, indicating 

smarter placement decisions. Improved CPU and memory 

utilization balance, resulting in optimized load distribution across 

nodes. Higher accuracy in resource allocation predictions. Lower 

latency, leading to faster task deployment and reduced service 

delays. Unlike traditional approaches, MRWS maintains 

simplicity in implementation while offering significant 

performance benefits, making it suitable for both academic 

research and real-world production environments. Its modular 

structure also allows for future extensions, such as inclusion of 

disk I/O, network bandwidth, or predictive analytics via ML 

models. Overall, MRWS stands out as a lightweight yet effective 

container scheduling strategy that bridges the gap between 

heuristic and intelligent placement models, contributing 

meaningfully to the development of energy-aware, SLA-

compliant, and performance-optimized cloud-native systems. 
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