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ABSTRACT 

Complex systems, such as smart grids, manufacturing plants, 

and autonomous transport networks, are becoming more 

digital. This improves operations but also creates weaknesses 

to cyberattacks. Traditional security approaches cannot always 

keep up with the real-time monitoring needed to detect and 

respond to new threats in these changing environments. This 

paper proposes using a Digital Twin (DT) architecture that is 

model-based to monitor security in complex systems. Digital 

Twin (DT) technology, along with Model-Based Systems 

Engineering (MBSE), lets us monitor security differently. The 

objective is to design a DT framework that mirrors a real-world 

system in a virtual environment. This allows for real-time 

analysis, detecting anomalies, and predicting how to react to 

security issues. The proposed architecture has three core layers: 

the Digital Twin Core, the MBSE Integration Layer, and the 

Security Layer. The architecture was implemented using 

MATLAB/Simulink for system modeling, Unity 3D for 

visualization, and Snort IDS for threat detection. The DT 

system was tested in a simulated industrial control system 

environment using OMNeT++ as the communication backbone 

and Kali Linux for launching common cyberattacks, such as 

data injection, spoofing, and replay attacks. The results showed 

that the DT architecture was able to detect threats with 96.5% 

accuracy. A comparative analysis show that the proposed 

model-based digital twin architecture improved detection 

accuracy by 18%, reduced false positives by 25%, and 

decreased detection latency by 32%. This work shows that a 

model-based DT architecture greatly improves how well 

security monitoring works in complex systems, making it more 

responsive and accurate. Future work will involve real-world 

deployment and integrating AI-driven prediction models for 

automatic threat mitigation.   
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1. INTRODUCTION 
Complex systems like industrial controls, smart grids, 

healthcare infrastructures, and self-driving cars have dynamic 

interactions. They also have parts spread out and rely heavily 

on cyber-physical integration. It is important to monitor the 

security of these systems because cyberattacks can hurt digital 

property and physical operations. This could cause safety 

issues, breaches, or economic losses [1]. Digital Twin (DT) 

technology, a virtual copy of a physical system mirroring its 

real-time behavior, has become a game-changer in predictive 

maintenance, system improvements, and, lately, cybersecurity. 

By continuously synchronizing with its physical twin, a DT 

helps detect threats early, analyze anomalies, and model how 

resilient a system is [2]. 

The use of a model-based Digital Twin architecture for security 

monitoring comes from limitations of traditional security 

solutions. These solutions often cannot adapt in real time or 

understand context. Existing intrusion detection systems and 

rule-based controls are not good enough at predicting or 

handling advanced threats or new exploits in complex 

environments [3]. Although digital twins are getting more 

popular for monitoring operations, using them for security 

monitoring in complex systems is an area that needs study. Not 

many systems integrate behavior modeling, real-time data, and 

cyber-physical security analysis into one digital twin 

architecture made for detecting threats. 

This study addresses the need for better security monitoring in 

complex systems by proposing a model-based digital twin 

architecture. The goal is to create, simulate, and test a security 

system that uses digital twins to detect and respond to cyber 

threats quickly. The study includes system dynamics modeling, 

integrating intrusion detection tools, and assessing 

performance in a simulated industrial situation. This paper 

introduces a three-layer digital twin structure for detecting 

cyber-physical threats. It combines modeling, simulation, and 

security analytics tools and shows how effective it works by 

measuring threat detection accuracy, response time, and system 

resilience during simulated attacks. 

The rest of the paper is organized as follows: Section 2 presents 

the literature review; Section 3 details the materials and 

methodology; Section 4 discusses the results and performance 

evaluation; Section 5 concludes the paper and outlines future 

research directions.  

2. LITERATURE REVIEW 
This section reviews the existing literature on Digital Twin 

(DT) technology, how it's used in system modeling, 

cybersecurity, and detecting anomalies in complex systems. 

The review is divided into four main areas: DTs in system 

modeling, DTs in security and anomaly detection, MBSE 

foundations, and an analysis of related research works. 

2.1 Digital Twins in System Modeling 
Digital Twins (DTs) are virtual models of real-world systems. 

They combine real-time data with system models. This allows 
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for system monitoring, problem diagnosis, and better decisions 

[4]. Grieves and Vickers [2] first came up with the idea of DTs 

to understand how complex systems behave. Since then, DTs 

have seen wide use in manufacturing, aerospace, and energy for 

tasks like predicting maintenance needs, making things run 

better, and managing the life cycle of equipment. Dietz et al. 

[5] divided DT operations into simulation, replication, and 

making things better, showing how they can help with decision-

making. These models make it easier to understand what is 

happening in complex environments. They also provide a 

simplified way to interact with physical systems. 

2.2 Digital Twins in Security and Anomaly 

Detection 
The application of digital twins in cybersecurity is a recent 

focus. Eckhart et al. [6] examined passive digital twins, which 

copy cyber-physical states to detect threats. Varghese et al. [7] 

proposed an intrusion detection system using real-time digital 

twins for Industrial Control Systems, with machine learning 

classifiers achieving over 93% accuracy. Empl et al. [8] 

presented a cybersecurity framework based on digital twins that 

combines past and current data for threat modeling. Vasilica et 

al. [9] used digital twins with built-in intrusion detection 

systems for smart robotics, showing better defense against 

cyberattacks. However, most of these systems lack scalability 

and integration into broader enterprise cybersecurity 

frameworks. 

2.3 MBSE Foundations 
Model-Based Systems Engineering (MBSE) uses formal 

modeling instead of many documents to design, analyze, and 

validate systems in a better way. This reduces mistakes and 

improves collaboration. In Digital Twin (DT) development, 

MBSE makes sure virtual models are accurate and current by 

clearly defining system components, behaviors, and data flows. 

This makes DTs more trustworthy for security monitoring and 

finding unusual activity. Security in complex cyber-physical 

systems depends on methods like detecting intrusions and 

behavior modeling. DTs make this better by comparing current 

and expected behaviors. However, despite growing interest in 

DTs for cybersecurity, a comprehensive architecture and 

threat-informed framework for securing such systems remains 

underdeveloped, highlighting the need for further research. 

2.4 Related Works 
Several authors have contributed to the body of knowledge on 

the use of Digital twins to solve security issues in complex 

systems. Some of the related works are documented as follows: 

Grieves and Vickers [2] conceptualized the Digital Twin (DT) 

as a changing computer model of real-world systems. This 

model is meant to deal with complex problems that occur over 

the life of engineering projects. They developed a theoretical 

framework that shows how the DT changes through the stages 

of design, production, and operation to help systems grow and 

to assist in decision-making. While their work provided a base 

for using DT in different fields, it did not put into practice 

methods for real-time data updating, and it did not take into 

account ways to include cybersecurity or threat detection. 

Eckhart and Ekelhart [6] proposed a security-focused Digital 

Twin (DT) framework for cyber-physical systems. The authors 

wanted to give industrial settings better security insight using 

virtual copies. They aimed to create a DT that could passively 

mimic network behavior and detect anomalies with rule-based 

monitoring techniques within simulated environments. This 

would allow for threat copying and forensic analysis. Their 

study helped get DTs involved in cybersecurity early on by 

showing they could be used for passive threat detection. Still, 

it was constrained by its lack of real-time responsiveness and 

adaptive capabilities in dynamic threat landscapes. 

Dietz et al. [5] surveyed digital twin use in cybersecurity to see 

how they help manage threats. The authors looked at papers 

and examples to see how digital twins are now used for 

security. Using a review of the literature and looking at actual 

examples, the study found that using digital twins for 

monitoring has benefits, like better awareness and being able to 

test how to deal with threats. The study also pointed out that 

this technology could do more to actively reduce threats. Still, 

the study was mostly theoretical and didn't have real-world 

examples or test results. 

Varghese et al. [7] developed a Digital Twin (DT)-driven 

Intrusion Detection System (IDS) to improve Industrial Control 

Systems (ICS) cybersecurity, because there is a growing need 

for real-time and accurate threat detection in key infrastructure. 

The purpose was to combine DTs with ensemble machine 

learning classifiers, like Random Forest and Support Vector 

Machines (SVM), to build an IDS that can quickly detect 

malicious activity in ICS networks. Their method involved 

simulating ICS environments and training models on labeled 

attack datasets to measure detection performance. The study 

reached 93.5% detection accuracy, showing that DT-based IDS 

frameworks can identify network intrusions. The design did not 

adapt dynamically, which limited its ability to quickly respond 

to system configuration changes in real-time scenarios. 

Empl et al. [8] presented a threat modeling framework using a 

Digital Twin (DT) to improve cybersecurity in cyber-physical 

systems. This system uses past and present data because there 

is a need for better risk assessment that understands the 

situation. The study created a mixed method, combining DT 

simulation results with attack graph analysis to check for new 

threats. Their methodology combined data from the virtual 

copy with set threat routes to copy and test vulnerabilities as 

they happen. The framework was better at predicting and 

ranking risks than traditional static models. This shows that 

combining data helps with flexible security modeling. But, its 

application was limited to centralized infrastructures, lacking 

validation in distributed or resource-constrained edge 

environments where latency and scalability are critical. 

Vasilica et al. [9] worked to improve the cybersecurity of self-

governing robot systems in smart factories. They did this by 

putting Intrusion Detection Systems (IDS) into Digital Twins 

(DTs) so they could detect unusual activity as it happens. The 

reason behind this was the need to secure more and more 

complex and self-governing industrial robots. Their approach 

combined a method of behavioral modeling using 

convolutional neural networks (CNN) with IDS methods. This 

helped them to correctly identify deviations from normal 

operation. This combination greatly lowered the number of 

false positives, which are common in traditional IDS setups. 

This made the system more dependable and trustworthy. 

However, the solution was only tested on small robot setups in 

a lab. This means it might not work as well on bigger or more 

varied factory systems. 

Ullah and Babar [10] looked at how important architecture is 

for better cybersecurity in large, data-driven systems. They 
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reviewed existing literature to identify architectural methods 

for big data cybersecurity platforms. Seeing the rise in difficult 

and large cybersecurity problems, their work gave detailed 

advice on making secure, scalable, and robust architecture. 

This helps improve choices and responses to threats. However, 

their study did not extend to the application of these principles 

within Digital Twin-based architectures, leaving a gap in 

addressing emerging cyber-physical system security 

paradigms. 

Gambo and Almulhem [11] addressed the growing need for 

flexible security in distributed systems. They created a Zero 

Trust Architecture (ZTA) framework suited for changing threat 

conditions. Their method focuses on access control based on 

policies, along with continuous verification mechanisms, to 

make sure security is strictly enforced based on the situation. 

Driven by the need to improve cybersecurity, they did a survey 

and examined case studies of current Digital Twin (DT) uses in 

security. They pointed out the great potential and possibilities 

for DT-based security monitoring. While their paper offers 

useful ideas and a plan, it is mostly descriptive. It leaves out 

hands-on details or proof of the framework. 

The contributions of these authors are commendable and have 

significantly advanced the field; however, notable gaps remain 

that continue to pose challenges for practical implementation 

and broader adoption. 

2.5 Identified Gaps in the Literature 
Digital Twins (DTs) have shown that they can model systems 

and detect anomalies. But we still need better, complete 

security monitoring systems that use DTs in real time for 

complex systems. Current solutions often focus on single areas, 

lack scalability, and do not support adaptive response 

mechanisms. Addressing these gaps is key to building practical, 

resilient, and scalable DT architectures that keep a close watch 

on security in complex systems. 

2.6 Justification for the Proposed DT 

Architecture 
This research proposes a model-based digital twin architecture 

for security monitoring in complex systems, using what we 

have learned from the identified gaps. The architecture 

integrates threat modeling that has many layers, feedback in 

real-time, and adaptive security controls that change as needed. 

It addresses limitations of previous DT implementations while 

aligning with modern cybersecurity frameworks. 

3. METHODOLOGY 
This section presents the design and implementation of our 

model-based Digital Twin (DT) architecture for security 

monitoring in complex systems. The method includes the 

architecture design, modeling and simulation environment, 

security integration, experimental setup, dataset, and 

evaluation metrics. 

3.1 Proposed Architecture 
Fig. 1 shows a Digital Twin (DT) architecture that uses real-

time and proactive methods for cybersecurity in complex 

systems. It combines Digital Twin synchronization with 

Model-Based Systems Engineering. The proposed architecture 

leverages the concept of digital twins to enhance security 

monitoring in complex systems such as industrial control 

systems, cyber-physical systems (CPS), and large-scale IoT 

deployments. By integrating real-time data streams, behavioral 

models, and advanced analytics, the architecture provides a 

robust framework for proactive threat detection and mitigation. 

The following subsections provide detailed descriptions of its 

key components.  

1. Complex Physical System (CPS) 

The physical layer represents the actual infrastructure under 

protection, such as industrial automation systems, smart grids, 

or IoT-enabled environments. These systems generate 

operational data reflecting their state, performance, and 

vulnerabilities. Within the architecture, the CPS acts as the 

ground truth whose behavior is continuously mirrored by its 

virtual counterpart, the digital twin. 

2. Data Acquisition Layer 

This layer serves as the interface between the physical system 

and the digital twin. It is responsible for capturing raw data in 

real time, using heterogeneous sources such as sensors, log 

collectors, intrusion detection probes, and network traffic 

monitors. Its primary goal is to ensure continuous and 

trustworthy data streams that provide comprehensive 

situational awareness of the CPS [12]. 

3. Data Management and Preprocessing 

Raw data from the acquisition layer is often noisy, redundant, 

or incomplete. This layer performs cleansing, normalization, 

and feature extraction to ensure high-quality inputs for further 

analysis. Techniques such as dimensionality reduction and 

statistical preprocessing are applied to highlight security-

relevant attributes while discarding irrelevant information. This 

guarantees that subsequent layers operate on structured, 

meaningful data representations [13]. 

4. Digital Twin Core 

At the heart of the architecture lies the digital twin, a high-

fidelity virtual model of the CPS. Continuously updated with 

real-time data, the digital twin enables simulation, prediction, 

and comparative analysis of system states. By contrasting 

actual behaviors with modeled expectations, it becomes 

possible to identify deviations that may indicate malicious 

activity or system malfunctions [14], [15]. 

5. Model Database and Knowledge Base 

This component maintains a repository of system models, 

baseline behaviors, and threat intelligence. It provides 

reference points against which the digital twin can validate 

system performance. The knowledge base incorporates attack 

signatures, anomaly profiles, and learned behavioral patterns, 

enabling both model-based and data-driven security analysis 

[13], [15]. 

6. Security Monitoring Engine 

The security monitoring engine constitutes the analytical 

backbone of the architecture. It integrates rule-based detection 

with machine learning approaches to identify threats in real 

time. By leveraging both features extracted from data and 

behavioral simulations from the digital twin, the engine is 

capable of detecting zero-day attacks, insider threats, and subtle 

anomalies that may bypass conventional defenses [12]–[14]. 

7. Visualization and Dashboard 

Effective security monitoring requires not only detection but 

also actionable insights. This component provides a 
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comprehensive view of the system’s security posture through 

dashboards, alerts, and reports. It translates complex analytical 

results into human-understandable visualizations that support 

decision-making by system operators, cybersecurity analysts, 

and security operation centers (SOCs). 

8. Control and Mitigation Layer 

The final component closes the loop by enabling response and 

resilience mechanisms. Once a threat is identified, the control 

layer initiates appropriate mitigation strategies such as system 

reconfiguration, isolation of compromised assets, or 

deployment of security patches. This ensures that the 

architecture is not only reactive but also adaptive and self-

healing, enhancing the resilience of the overall system [16]. 

3.2 Modeling, Simulation Tools, and 

Threat Modeling 
To aid in developing and testing the proposed Digital Twin 

(DT) architecture for security monitoring in complex systems, 

a simulation setup with multiple layers was designed. Physical 

processes and how the system behaves were modeled using 

MATLAB/Simulink and AnyLogic. This allowed us to capture 

detailed control logic and cyber-physical interactions.  

 

Fig. 1: The Proposed Model-Based Digital Twin (DT) Architecture

OMNeT++ was used to simulate network actions like traffic, 

latency, and how attacks spread. Unity 3D gave a visual 

interface in real-time to improve how well the system can be 

seen and understood. The cybersecurity layer included Snort 

and Suricata as the main tools for detecting intrusions and 

anomalies. These tools allowed constant monitoring of system 

traffic and unusual behavior on both the network and device 

levels. A threat scoring tool was also built to assess risks in real-

time using data from the DT. This tool helped with automated 

threat correlation, contextual alerts, and adaptive responses, 

making the system respond well to changing threats. To 

analyze threats systematically, we used the STRIDE method to 

sort them into six main types: spoofing, tampering, repudiation, 

information disclosure, denial-of-service, and elevation of 

privilege. We measured these threats using the common 

vulnerability scoring system (CVSS v3.1) to decide which 

actions to take first and to guide our ongoing security rules. 

Combining STRIDE and CVSS helped us create a well-

organized and risk-conscious defense plan that follows 

standard practices. The DT architecture was designed to meet 

both functional and security needs. In terms of functions, it 

allows for getting data in real time, creating models of how 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 8 – No. 1, September 2025 – www.caeaccess.org 

 

32 

users behave, detecting unusual activity, studying past trends, 

running simulations of different situations, and controlling tests 

of countermeasures in two directions. Together, these features 

improve understanding of what is happening, make threat 

responses more accurate, and strengthen the system's ability to 

work even when things go wrong, all without stopping regular 

operations. 

The DT architecture is built around the CIA triad: 

confidentiality, integrity, and availability. The design includes 

role-based access control, data encryption, secure logging, and 

compliance with regulations to keep system data safe and 

ensure reliable operation, even under adversarial conditions. 

The system considers different types of attackers, such as 

insiders, outsiders, and supply chain attacks. Attack points 

include device firmware, communication protocols, system 

modeling interfaces, and third-party integrations. By 

considering attacker skills, known vulnerabilities, and system 

dynamics, the architecture is designed to be adaptable and 

robust when securing cyber-physical environments. 

3.3 Experimental Setup 
To validate the proposed Digital Twin (DT) architecture for 

security monitoring in complex systems, a hybrid simulation 

testbed was built. This setup combined discrete event 

simulation, real-time data modeling, and simulated attack 

scenarios. The experiment was set up on a local network using 

a host machine with an Intel Core i7 processor, 32 GB of RAM, 

and Windows 11. It ran several VirtualBox virtual machines 

with Ubuntu 22.04. These VMs handled service arrangement, 

network simulation, and intrusion detection. The simulation 

included OMNeT++ for modeling how the network behaves 

when attacked, MATLAB/Simulink for keeping DT logic and 

physical process behavior in synchronization, and AnyLogic 

for showing system changes in cyber-physical situations. 

Raspberry Pi nodes were used to copy edge-layer resource 

constraints. Attacker and victim nodes were created as virtual 

machines to copy threat vectors. 

The study involved three main attack types. First, spoofing 

attacks tested how well the system could identify fake data 

coming from simulated edge nodes, as well as the time it took 

to do so. Second, data injection attacks, which were simulated 

using OMNeT++, were used to manipulate the network to 

cause wrong decisions, false alerts and system misbehavior 

without necessarily stopping service. Third, replay attacks 

tested the system's ability to predict events and keep them in 

synchronization by injecting previous, but valid, data after a 

delay. 

Performance was evaluated using multiple metrics:  

1. Threat Detection Rate (TDR)  =         
𝑇𝑃

𝑇𝑃+𝐹𝑁
             (1); 

 

2. False Positive Rate (FPR)     =         
𝐹𝑃

𝐹𝑃+𝑇𝑁
                  (2); 

 

3. Average Latency (L)  =      
ΣT_detect − T_attack

𝑁
       (3); 

 

4. System Uptime (SU%) = 
𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑖𝑣𝑒 𝑇𝑖𝑚𝑒 − 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒
× 100 (4);

           

5. CPU Utilization (CU%) = 
𝐷𝑇 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒
× 100      (5); 

Security tools were also integrated into different parts of the 

system design. At the network level, Snort IDS checks for 

known intrusion patterns. At the application level, a special 

system learned from real and fake data looked for unusual 

behavior. Also, a basic Hyperledger Fabric v2.5 node was 

added to keep a secure record of important security actions and 

system activity. This helped trace events later for investigation. 

With this setup, the DT system was thoroughly tested in 

realistic conditions and measure security and performance 

results. Table 1 has more details about the data used. 

Table 1. Table Datasets 

Dataset 

Name            

Source Size Features Use Case                      

TON_IoT                 University 

of New 

South 

Wales 

(UNSW) 

22 

GB     

Telemetry, 

logs, 

network 

packets      

Intrusion and 

anomaly 

detection 

CIC-

IDS2018             

Canadian 

Institute  

16 

GB    

Network 

flows, 

timestamps, 

labels     

Threat 

classification        

 

3.4 Data Flow and Synchronization   
The sensor data, control commands, and system logs were 

synchronized between physical and digital layers every 2 

seconds. An event manager made sure the digital twin adjusted 

to changes quickly, updating security as required. This design 

lets us test how well the system detects, responds to, and adapts 

to different threats in real time, mimicking a real complex 

system under cyber-attack. 

The Data Flow Diagram in Fig. 2 shows how a physical system 

and its digital twin interact in real time, within a cybersecurity 

setup. The physical system, like a smart farm or factory, 

constantly creates sensor and actuator data. The Data 

Acquisition module gets this data and sends it to the 

Synchronization Engine. This engine matches the incoming 

data with the Physical Model, which is a simulation that 

predicts how the system will behave, and the Data Model, 

which handles past and current data for analysis and decision-

making. The models' outputs go to the Security Monitoring 

module. This module detects anomalies, identifies intrusions, 

and checks for policy violations. Based on what it finds, the 

Command Control Loop sends system changes or mitigation 

actions back to the physical system through the synchronization 

layer. The Synchronization Engine is important because it 

keeps everything timed right and consistent across models. It 

also allows feedback to go both ways, which keeps the digital 

twin as an accurate, real-time reflection of the physical 

environment. This flow allows for an adaptive, resilient, and 

intelligent security architecture for complex cyber-physical 

systems. 

4. RESULTS AND DISCUSSION 

4.1 Experimental Results 
This section evaluates the proposed model-based Digital Twin 

(DT) architecture for security monitoring in complex systems 

by examining key performance indicators (KPIs) and 

anticipated outcomes. The assessment focuses on how 

effectively the design detects and mitigates security threats 

while maintaining system efficiency. The evaluation includes 

the following core metrics: Detection Latency, which measures 
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the time taken to generate alerts after an anomaly occurs; False 

Positive and False Negative Rates, which assess the accuracy 

of threat detection and the frequency of missed or incorrect 

alerts; and System Overhead, which examines CPU and 

memory usage under both normal operating conditions and 

during simulated attacks. These metrics collectively 

demonstrate the robustness and operational efficiency of the 

DT-based approach. 

 

Fig. 2: Data Flow Diagram & Synchronization Process 

The system was tested against three attack types: replay, data 

injection, and command spoofing. The simulation results are 

summarized in Table 2. 

Table 2. Security Monitoring Performance 

Attack 

Type         

Detection 

Latency 

(ms) 

False 

Positives 

(%) 

False 

Negatives 

(%) 

System 

Overhead 

(%) 

Replay 

Attack       

82 1.2 2.5 12.3 

Data 

Injection      

75 0.8 3.1 13.6 

Command 

Spoofing    

95 1.5 1.9 14.0 

 

Analysis of security monitoring performance of the data in 

Table 2 shows that: 

Detection latency was fastest for Data Injection at 75 ms, 

followed by Replay Attack at 82 ms, while Command Spoofing 

showed the highest latency at 95 ms, indicating relatively 

slower detection. 

False positive rates were lowest in Data Injection at 0.8%, 

while Replay Attack and Command Spoofing recorded slightly 

higher rates at 1.2% and 1.5%, respectively, indicating a 

marginally more conservative detection response. 

False negatives were lowest for Command Spoofing at 1.9%, 

followed by Replay Attack at 2.5%, while Data Injection 

recorded the highest rate at 3.1%, indicating relatively weaker 

detection reliability for that attack type. 

System overhead was lowest during Replay Attack at 12.3%, 

while Command Spoofing incurred the highest overhead at 

14.0%, suggesting greater resource demands for detecting 

complex attack patterns. 

The security monitoring performance is depicted in Fig. 3. 
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Fig. 3: Security Monitoring Performance 

The performance of the proposed DT system was evaluated 

against a baseline non-DT monitoring system. The DT system 

achieved significantly lower detection latency while 

maintaining stable performance when scaled to simulate a plant 

with 50 sensors and 10 Programmable Logic Controllers. 

Furthermore, the proposed architecture was benchmarked 

against traditional rule-based intrusion detection systems and 

decision tree approaches that do not use models.  

Table 3 presents a comparative analysis showing that the 

proposed model-based digital twin architecture improved 

detection accuracy by 18%, reduced false positives by 25%, 

and decreased detection latency by 32%, demonstrating 

superior performance over traditional systems in accuracy, 

efficiency, and reliability for real-time security monitoring in 

complex environments, as shown in Fig. 4. 

Table 3. Comparative Evaluation of Proposed 

Architecture vs. Traditional Systems 

Metric      Improvement (%) 

Detection Accuracy +18%             

False Positives     -25%             

Detection Latency   -32%        

 

 

Fig. 4: Improvement of Proposed Model over Traditional 

Rule-Based IDS and Non-Model-Based DT Systems 

4.2 Discussion 
The model-based Digital Twin (DT) architecture represents a 

shift from traditional reactive security methods to a proactive, 

intelligent, and integrated approach for securing complex 

systems. By combining Model-Based Systems Engineering 

(MBSE) with real-time DT synchronization, the architecture 

enhances threat detection, anomaly identification, and system-

wide situational awareness. SysML-based abstraction enables 

accurate modeling of expected system behavior, while the twin 

synchronization engine ensures continuous alignment between 

physical and virtual environments. This integration supports 

early threat detection, context-aware monitoring, and 

adaptability across the system lifecycle. 

Compared to conventional data-driven security approaches, the 

proposed DT framework reduces false positives, enables 

simulation of potential attacks in a safe virtual space, and offers 

comprehensive visibility into multi-stage threats. Automated 

synchronization and analysis reduce analyst workload, while 

formal modeling improves compliance and supports forensic 

auditing. 

Despite its strengths, the architecture faces limitations related 

to complexity, scalability, integration, automation of responses, 

and the inherent security of the DT itself. These challenges 

highlight key areas for future research aimed at enhancing the 

robustness, adaptability, and practical deployment of DT-based 

cybersecurity solutions in increasingly interconnected cyber-

physical environments. 

5. CONCLUSION 
This paper presents an architectural framework for developing 

model-based Digital Twins (DTs). These DTs are for improved 

security monitoring in complex cyber-physical systems. Why 

this method is important was explained. This is because cyber 

threats are getting more complex. Also, traditional security 

methods have limitations in fast-changing, interconnected 

environments. The proposed architecture uses Model-Based 

Systems Engineering (MBSE) to build precise models of 

physical systems. These models act as a solid reference for 

standard performance. By constantly updating this virtual 

model with current data, the Digital Twin gives great insight 

and helps detect anomalies early. The built-in Security Monitor 

Module, which has behavior comparison, methods for 

detecting unusual activity, and a rule engine, is designed to 

identify both known and new threats fast and accurately. 

This model-based DT method has key benefits such as a move 

to proactive security, better understanding of security events, 

better IT/OT security, and improved system resilience. What 

the system needs to do and the security requirements was set 

out. A detailed threat model was provided, went over the 

components and how they relate to each other in the proposed 

architecture. Also, how to put the architecture in place and run 

simulations, and test scenarios to validate its effectiveness was 

considered. This research offers a basic design for future 

security monitoring systems, keeping in mind the difficulties of 

model complexity, data processing, and experimental testing 

needs. Intelligent, integrated, and predictive methods that can 

adapt to the changing threat environment will shape the future 

of cybersecurity in complex systems. The model-based Digital 

Twin architecture presented is a method to make this idea a 

reality, which will improve the reliability and integrity of 

critical cyber-physical infrastructures. 

Future work will put this model-based Digital Twin 

architecture into real cyber-physical settings to see its 

effectiveness under live conditions.  Integrating complex AI 

prediction models, like deep learning and reinforcement 

learning will also be looked into, in order to predict threats on 
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its own, assess risks as they change, and implement real-time 

mitigation strategies. This evolution will shift the framework 

from reactive monitoring to proactive and self-adaptive 

defense, allowing the system to learn from evolving threat 

patterns and automatically respond to incidents with minimal 

human intervention. 
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