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ABSTRACT 

Forecasting exchange rate remains a major challenge due to 

nonlinear dynamics, structural volatility, and complex cross-

currency interactions. Although deep learning models have 

demonstrated strong predictive capability, however, the 

individual architectures often specialize in limited temporal 

patterns and may overfit volatile financial series. This study 

proposes a hybrid multivariate stacking ensemble that 

integrates Long Short-Term Memory (LSTM), Temporal 

Convolutional Network (TCN), and Multi-Task Learning 

(MTL) models with a ridge-regression meta-learner to enhance 

predictive accuracy and stability. Daily EUR/GHS, GBP/GHS, 

and USD/GHS exchange rates from January 2010 to September 

2025 were modeled using a sliding-window, multi-input, multi-

output configuration. Performance was benchmarked against 

standalone deep learning models and a Vector Auto-Regression 

(VAR) baseline. Results show that the proposed hybrid 

multivariate stacking ensemble (TCN+LSTM+MTL) model 

achieves the lowest mean RMSE (0.7488), MAE (0.5285), 

MAPE (3.75 percent), and SMAPE (3.64 percent), representing 

approximately 89.7 percent and 92.7 percent RMSE reduction 

compared to VAR and LSTM, respectively. The findings 

confirm that combining specialized deep architectures with 

regularized meta-learning significantly improves forecasting 

accuracy and robustness in volatile financial markets and offers 

insights for future research in cross-architecture fusion and 

meta-learning for financial econometrics. 

Keywords 
Exchange Rate Forecasting, Multivariate Modeling, Stacking 

Ensemble, Long Short-Term Memory, Temporal 

Convolutional Network, Multi-Task Learning, Ridge 

Regression, Meta-Learning, Deep Learning, Financial Time 

Series. 

1. INTRODUCTION 
Financial markets are very important in the development of the 

global economy. The forex (FX) market is an integral 

component of the financial market. As international trades 

continue to exist, exchange rates remain a crucial link between 

national economies [1]. They influence macroeconomic 

fundamentals, stability of capital flows and international 

transactions. Hence, forecasting exchange rate dynamics and 

trends is vital for investors and multinational firms to make 

informed financial decisions, optimize portfolio strategies, and 

manage exchange rate risks effectively [2]. Forecasting of 

exchange rate has attracted significant interest in academic 

research and economic analysis [3]. Many scholars have carried 

out research studies on exchange rate behavior [4-6]. Exchange 

rate time series studies is a major aspect of time-series research. 

This involves the assessment and forecast of fluctuation ranges 

and trend changes in the exchange rate dynamics.  

Various techniques have been employed to model exchange 

rates. Fundamental analysis relies on economic theory to 

identify variables that influence exchange rates in the long 

term, such as trade imbalances, interest rate differentials, and 

overall economic conditions of countries [7]. Technical 

analysis focuses on recognizing patterns in historic data to 

forecast future movements, often disregarding underlying 

economic fundamentals [8]. Econometrics and time series 

techniques such as vector autoregressive (VAR), 

autoregressive integrated moving averages (ARIMAs) and 

generalized autoregressive conditional heteroscedastic 

(GARCH) models, analyze historical data to capture temporal 

dependencies and volatility structures in exchange rate 

dynamics [9]. However, these conventional economic 

approaches are limited in their ability to capture the 

nonlinearities, structural shifts, and long range dependencies 

characteristics associated with exchange rate time series [10]. 
These data are highly nonlinear, nonstationary, and volatile, 

making accurate forecast of exchange rate fluctuations 

extremely complicated. Exchange rate fluctuations are 

influenced by both domestic and international economic 

conditions, domestic and international economic conditions, 

global market sentiment, political developments, and other 

external influences. Additionally, factors such as market 

participants’ psychological expectations, geopolitical tensions, 

and financial crises often have significant impact on currency 

valuations, introducing volatility and complexity into exchange 

rate data [11]. The limitations of traditional economic models 

to forecast exchange rates have prompted the need for 

alternative approaches in modeling exchange rate dynamics 

[12]. Recent advancements in machine learning (ML) and deep 

learning (DL) techniques are proving to be promising in 

improving forecasting accuracy [13]. ML and DL models are 

gaining widespread adoption for their ability to analyze large 

datasets and capture complex patterns to enhance exchange rate 

forecasting [14].  DL models use several neurons and hidden 

layers to analyze sequential data, enabling them to generate 

better forecasts than economic models [15]. They provide 

computational power and functional flexibility necessary to 

detect latent patterns in complex datasets [16].  Aydin & 
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Cavdar [17] showed in their study that Artificial Neural 

Networks (ANNs) provided predictive performance that is 

superior to VAR models in exchange rate forecasting. Dautel et 

al. [18] systematically compared LSTM networks and Gated 

Recurrent Units (GRUs) with traditional econometric models 

like VAR. The study concluded that the deep learning models 

outperformed traditional models in exchange rate forecasting. 

García et al. [19] compared the predictive performance of 

ARIMA and LSTM on foreign exchange forecasting tasks. The 

outcome of the study showed that LSTM offers superior 

predictive accuracy.  Zhao et al. [20] compared the 

performance of ARIMA, LSTM, and Gated Recurrent Unit 

(GRU) models in exchange rates forecasting. The findings from 

the study indicated that the LSTM model delivers better 

forecasting accuracy than ARIMA, which underscores the 

potential of DL models in financial time series forecasting. 

Although individual DL models have achieved considerable 

success in financial forecasting, the effectiveness of individual 

DL models remains limited as they are susceptible to issues 

such as overfitting and the inability to fully exploit 

complementary information across diverse architectures. When 

individual DL models are trained on highly volatile financial 

time series data like exchange rates, they can learn both 

meaningful patterns and random noise resulting in poor 

generalization, and hence poor performance on unseen data 

[21-22]. Standalone DL model restricts learning process to a 

narrow feature domain. For instance recurrent models like 

LSTM gives priority to long-term temporal dependencies, 

convolutional models such as Temporal Convolutional 

Network (TCN) put emphasize on short-term local patterns, 

and Multi-Task Learning (MTL) networks leverage useful 

information contained across multiple related tasks [23-24]. 

This specializations of DL architectures implies that individual 

model may not be able to capture diverse and interacting 

dependencies found in multivariate financial data holistically. 

Consequently, lack of cross-architectural integration limits 

ability of individual models to leverage complementary 

information that might improve robustness and adaptability 

across varying market conditions reducing the potential to 

achieve generalizable financial predictions [25]. 

In recent years, the use of hybrid models that combine ML and 

DL techniques has increased significantly in FX market 

prediction.  Hybrid models have demonstrated improved 

performance. Lin et al. [26] proposed a hybrid model that 

integrated complete ensemble empirical mode decomposition 

with adaptive noise (CEEMDAN) and multilayer long short-

term memory (MLSTM) networks and the findings showed that 

the hybrid model effectively captured complex correlations in 

exchange rate data, and improved performance. Islam and 

Hossain [27] integrated GRU and LSTM neural network and 

found the hybrid model to be superior to simple moving 

average, LSTM, and GRU models. He et al. [28] proposed an 

ensemble model that integrated ARMA, CNN, and LSTM to 

capture both linear and nonlinear features in financial time 

series. The results showed that the ensemble model performed 

better than the individual models, including LSTM and CNN. 

Sina et al. [29] performed a systematic review that analyzed 

twenty one (21) studies. The study concluded that hybrid 

forecasting methods perform better individual models. Gu et al. 

[30] created a hybrid model that integrated LSTM and GRU 

within an AdaBoost framework.  The results from the study 

indicated that the ensemble model produced an improved 

performance in forecasting exchange-rate compared to 

standalone models. 

This study builds on prior research by developing and 

evaluating hybrid multivariate ensemble stacking framework 

designed to augment forecasting of daily exchange rate. The 

proposed framework integrates forecasts from deep learning 

models including Temporal Convolutional Network (TCN), 

Long Short-Term Memory (LSTM), and Multi-Task Learning 

using ridge regression as a meta-learner. While each of these 

DL architecture has shown a strong capabilities across diverse 

time series forecasting tasks, prior research has rarely explored 

the effectiveness of integrating their complementary inductive 

biases which are causal dilated convolutions, sequential 

memory, and shared multi-task representations within a unified 

multivariate stacking framework designed for exchange rate 

forecasting. Hence, there is a limited empirical evidence 

regarding which heterogeneous model combinations yield the 

most substantial forecasting improvements. Also, existing 

research provides limited insight into how a simple yet robust 

technique like ridge regression can serve as an effective meta-

learner for aggregating outputs from complex DL models while 

ensuring generalization, computational efficiency, and 

interpretability. To address these gaps the current study 

systematically integrating TCN, LSTM, and MTL models 

within a ridge regression based stacking ensemble to achieve 

an improved predictive performance in exchange rate 

forecasting.   

2. METHOD 

2.1 Dataset Description 
This study conducted an empirical analysis using daily closing 

prices of three (3) major currency pairs - EUR/GHC, 

GBP/GHC, and USD/GHC obtained from the Bank of Ghana 

database (https://www.bog.gov.gh). Each currency pair data 

range from 4th January 2010 to 17th September 2025, 

comprising 3894 entries.  The dataset was partitioned 

sequentially into training, validation, and test sets in a 70:15:15 

ratio. 

2.2 Data Standardization 
The z-score technique illustrated in (1) was applied to scale the 

data to ensure zero mean and unit variance before model 

training. The transformation was subsequently inverted to 

recover values on the original scale for model evaluation. 

𝑥̀ =
𝑥−𝜇

𝜎
                                                        (1) 

𝜇 is mean of the training data  

𝜎 denote standard deviation of the training data. 

2.3 Sliding Window  
The sliding window approach with a lookback window L and 

forecast horizon H was used to convert the exchange rate time 

series data into a supervised MIMO (multi-input multi-output) 

learning tasked. For each time step t, an input window of length 

L was used to predict the next H steps as formulated in (2) and 

(3). 

𝑋𝑡 = [𝑥𝑡−𝐿 , 𝑥𝑡−𝐿+1, … , 𝑥𝑡−1]        (2) 

𝑌𝑡 = [𝑥𝑡 , 𝑥𝑡+1, … , 𝑥𝑡+𝐻−1]                       (3) 

𝑋𝑡 ∈ ℝ𝑀 and M = number of currency pairs = 3. 

L =30, and H = 1 was used in this study. The resulting 

supervised dataset is defined in (4):  

𝐷 = {(𝑋𝑡, 𝑌𝑡)}𝑡=𝐿
𝑇−𝐻                            (4) 

2.4 Baseline Model 
Vector auto-regression (VAR) model was implemented as the 

baseline statistical forecasting framework. It is a multivariate 

https://www.bog.gov.gh/
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time series model designed to capture dynamic linear 

interdependencies across various endogenous variables. It was 

introduced by Sims [31]. VAR model extends univariate 

autoregressive (AR) framework to systems of equations. It 

models each variable as a linear function of its own past values 

and the past values of all other variables in the system as shown 

in (5) and (6). VAR is very popular and widely used in 

macroeconomics, finance, and forecasting. It enables flexible, 

data-driven representation of dynamic interactions without any 

strong a priori structural assumptions imposition. Given M-

dimensional time series. 

𝑋𝑡 = [𝑥1𝑡 , 𝑥2𝑡  , .  .  .  , 𝑥𝑀𝑡]′     (5) 

VAR model is expressed as: 

𝑋𝑡 = 𝑐 + ∑ 𝐴𝑖
𝑝
𝑖=1 𝑋𝑡−1 + 𝜀𝑡    (6) 

Where 𝑐 represents 𝑀 × 1 vector of intercept terms, 𝐴𝑖(𝑖 =
1, … , 𝑝) denotes 𝑀 × 𝑀 coefficient matrices characterizing 

linear lag-𝑖 interdependences among endogenous variables, 𝑝 

is optimal lag order determined based on Akaike Information 

Criterion (AIC), and 𝜀𝑡 denotes white-noise error term. 

2.5 Deep Learning Models 
Three DL architectures comprising Long Short-Term Memory 

(LSTM), Temporal Convolutional Network (TCN), and Multi-

Task Learning (MTL) network were developed to forecast 

exchange rate. These architectures are designed to capture non-

linear temporal dependencies and cross-series interactions in 

the exchange rate market. The models were trained on 

standardized input sequences generated by the sliding window 

transformation of historical exchange rate data.  Model 

parameters were optimized using the Adam optimizer to 

minimize the mean squared error (MSE) loss function. The 

models were trained to minimize MSE with L2 regularization. 

The resulting loss function as shown by (7) penalizes both large 

prediction errors and excessively large parameter magnitudes 

to ensure good generalization. 

ℒ(Θ) =
1

𝑁
∑ ‖𝑦𝑡 − 𝑦̂𝑡‖2

2𝑁
𝑡=1 + 𝜆 ∑ ‖𝑤‖2

2
𝑤𝜖Θ    (7) 

2.5.1 Long Short-Term Memory (LSTM) 
LSTM architecture is an extension of conventional recurrent 

neural networks (RNNs) that incorporate memory cells and 

gating mechanisms to alleviate vanishing and exploding 

gradient problems to enable long-range sequence modeling.  

Each LSTM cell maintains two internal states, namely a cell 

state and a hidden state. Together, the two internal states control 

long and short-term memory propagation across time [32].  For 

a time step t, given the input vector, 𝑥𝑡, the input gate, forget 

gate, and output gate are computed using (8)–(10). The 

candidate cell state is generated with (11). Then the cell state 

and hidden state are updated using (12) and (13), respectively:      

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡 + 𝑏𝑖)        (8) 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡 + 𝑏𝑓)      (9) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡 + 𝑏𝑜)      (10) 

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡 + 𝑏𝑐)      (11) 

𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀𝑐̃𝑡        (12) 

ℎ𝑡 = 𝑜𝑡⨀𝑡𝑎𝑛ℎ(𝑐𝑡)       (13) 

 

Where: 

• 𝑖𝑡,𝑓𝑡, and  𝑜𝑡 are input, forget, and output gates 

respectively. 

• 𝑐̃𝑡 is candidate memory, 

• 𝑐𝑡 is cell state update, and ℎ𝑡 represents hidden states 

update, 

• σ(⋅) denotes sigmoid activation function and  tanh(⋅) 
hyperbolic tangent function, 

• 𝑊∗ and 𝑈∗ are the input and recurrent weight 

matrices, and 𝑏∗ is the corresponding biases. 

• ⊙ represents element-wise multiplication 

 

The implemented LSTM model architecture, as shown in Fig. 

1, used a deep sequential architecture. It is composed of two 

stacked LSTM layers, followed by batch normalization, 

dropout, and fully connected dense mappings. The input tensor 

has a shape of (L, M), where L is the number of lookback time 

steps and M=3 is the number of exchange rate pairs. The 

architecture consists of two LSTM layers, each followed by a 

batch normalization block to stabilize hidden state activations 

and improve training efficiency by reducing internal covariate 

shift. The first LSTM layer consists of 128 hidden units with an 

output sequence 𝐻(1) ∈ 𝑅𝐿 ×128. The second LSTM Layer has 

64 hidden units, generating a final temporal embedding  ℎ(1) ∈
𝑅64. A dropout layer with a rate of 0.25 was employed to 

reduce overfitting by randomly deactivating neurons during 

training. A dense layer with 128 neurons and ReLU activation 

serves as a fully connected layer, converting the temporal 

embedding into a nonlinear feature space. The final output 

layer is a linear dense mapping with M units with a forecast as 

indicated in (14). The overall network defines a nonlinear 

mapping function as shown in (15).  

𝑦̂𝑡+1 = 𝑊0
(𝑓)

ℎ(2) + 𝑏0
(𝑓)

                     (14) 

𝑊0
(𝑓)

 and 𝑏0
(𝑓)

 are learnable weight matrix and bias vector 

respectively. 

𝑦̂𝑡+1 = 𝑓𝐿𝑆𝑇𝑀(𝑋𝑡 , Θ)                            (15) 

Where Θ  represents all learnable weights and biases of the 

network 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

 

  

  

           Fig 1: LSTM Architecture 

 

2.5.2 Temporal Convolutional Network (TCN) 
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TCN is a convolutional architecture designed specifically for 

sequential and time-series modeling. They effectively capture 

long-range temporal dependencies while ensuring parallelized 

sequence processing by using dilated convolutional filters with 

controlled receptive fields [33]. Each TCN layer applies 1D 

causal convolution to ensure that predictions at time t only 

depend on inputs up to t. For a given layer 𝑙, the convolution 

output is shown in (16). 

ℎ𝑡
(𝑙)

= 𝜙 (∑ 𝑊𝑘
(𝑙)

𝐾−1

𝑘=0

ℎ𝑡−𝑘
(𝑙−1)

+ 𝑏(𝑙))                            (16) 

Where: 

• 𝐾 is the kernel size (set to 3), 

• 𝑊𝑘
(𝑙)

 are the convolutional filters, 

• ϕ(⋅) is the ReLU activation, 

• ℎ𝑡
(0)

= 𝑥𝑡 

The TCN architecture implemented as shown in Fig. 2 consists 

of processed sequential inputs of shape (L, M) followed by a 

Conv1D layer with a kernel size of 3 and 64 filter with a ReLU 

activation and an L2 weight regularizer to ensure smooth 

training and avoid overfitting. Batch normalization is then 

applied to stabilize feature distributions and accelerate 

convergence. This is followed by a second Conv1D layer with 

64 filters, a kernel size of 3, and ReLU activation, and a second 

Batch normalization to boost training stability. A dropout layer 

with a rate of 0.25 is then applied to mitigate overfitting. A 

Global Average Pooling (ℎ𝐺𝐴𝑃) as indicated in (17) is 

employed to aggregate temporal information by computing the 

mean across time steps. The aggregated information is passed 

to a dense layer comprised of 128 neurons, ReLU activation, 

and L2 regularization. The architecture has a final output layer 

with a linear dense consisting of M units, which generates the 

multi-output forecasting as shown in (18). 

ℎ𝐺𝐴𝑃 =  
1

𝐿
∑ ℎ𝑡

(𝐿)

𝐿

𝑡=1

                                            (17) 

𝑦̂𝑡+1 = 𝑊0
(𝑓)

ℎ𝐺𝐴𝑃 + 𝑏0
(𝑓)

         (18) 

 

 

 

Fig. 2: TCN architecture 

2.5.3 Multi-Task Learning (MTL) Network 
MTL is a DL paradigm that is designed to enable training of a 

single model to perform multiple related tasks simultaneously. 

Instead of training independent models for each tasks, it 

exploits shared representations to achieve efficient learning and 

generalization. It learns a common latent representation across 

all series and incorporates distinct task-specific output heads 

which facilitates effective information sharing and preserving 

task-level specialization [34].  

The model takes the exchange rate series as input and outputs 

the one-day-ahead exchange rates. The MTL Architecture is 

shown in Fig 3. The architecture consists of a Shared Dense 

layer (ℎ𝑠) as shown in (19) and it comprised of 256 units with 

ReLU activation and L2 regularization. The shared dense layer 

is followed by batch normalization and dropout, followed by 

three separate dense layers with 128 units for task-specific 

branches: for each currency pair (m=1, 2, and 3), the model 

used a dedicated task-specific branch as shown in (20). The 

three scalar outputs are then combined to form the multi-output 

prediction vector (𝑦̂𝑡+1) as indicated in (21). 

ℎ𝑠 = 𝑅𝑒𝐿𝑈(𝑊𝑠𝑧𝑡 + 𝑏𝑠)                        (19)     

𝑧𝑡 denotes the input feature vector, 𝑊𝑠 and 𝑏𝑠 are the 

corresponding weight matrix and bias term, and ℎ𝑠 represents 

the shared latent representation.  

ℎ𝑚 = 𝑅𝑒𝐿𝑈(𝑊𝑚ℎ𝑠 + 𝑏𝑚)                    (20) 

 𝑦̂𝑡+1
(𝑚)

= 𝑤𝑚
𝑇 + 𝑏𝑚

′                                  (21)   

Where ℎ𝑚 is the task-specific hidden features, and 𝑦̂𝑡+1
(𝑚)

 is the 

predicted value for task m. 

 

Fig. 3: MTL Architecture 

 

 

2.6 Stacking Framework 
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Fig. 4: Stacking approach

A stacking framework is an ensemble learning architecture that 

combines multiple predictive models to achieve better 

performance than any single model. In a stacking framework, 

various base learners are first trained independently on the 

same dataset. Each of the base learner generate its own 

predictions, which are treated as meta-features representing 
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different perspectives on the data. The meta-features are used 

as inputs to a meta-learner, which learns to optimally combine 

the outputs of the base learners. The meta-learner identifies 

systematic patterns in the predictive behavior of each base 

model across instances, and learns to assign appropriate 

weights or transformations to their predictions to generate a 

more accurate final prediction [35]. The stacking framework in 

this work is shown in Fig 4.  

Letting 𝑌𝑡  ∈ ℝ𝑀 denote the target vector of 𝑀 currency pairs 

at time 𝑡. Then for each model 𝑘 ∈ {1, 2, 3} which corresponds 

to the LSTM, TCN, and MTL networks, one-step ahead 

forecast on the validation set as shown in (22). 

𝑌̂𝑡
(𝑘)

= 𝑓𝑘(𝑋𝑡; 𝜃𝑘)    (22) 

𝑓𝑘(∙) denotes the nonlinear mapping learned by the kth deep 

network with parameters 𝜃𝑘 and 𝑋𝑡  is the multivariate lagged 

input vector constructed via a sliding window mechanism. The 

base models' predictions on the validation dataset were 

concatenated column-wise to form the stacking feature matrix, 

which served as the input to the meta-learner as defined in (23). 

𝑍𝑡 = [𝑌̂𝑡
(1)

, 𝑌̂𝑡
(2)

, 𝑌̂𝑡
(3)

] ∈  ℝ𝑀×3           (23) 

Ridge regression model was used as meta-learner to learn a 

linear combination of the predictions of the base model that 

minimized the MSE on the validation data. Ridge regression 

was selected as the meta-learner because of its favorable bias - 

variance trade off and numerical stability when combining 

predictions from correlated deep learning architectures. 

For each currency pair 𝑖 ∈  {1, … , 𝑀} the meta-learner 

estimated coefficients 𝛽𝑖 = [𝛽𝑖1, 𝛽𝑖2, 𝛽𝑖3]𝑇 by solving (24) 

min
𝛽𝑖

∑ (𝑦𝑡,𝑖 − 𝑍𝑡𝛽𝑖)
2𝑇𝑣𝑎𝑙

𝑡=1 + 𝛼‖𝛽𝑖‖2
2       (24) 

𝑦𝑡,𝑖 is the observed value of currency pair  𝑖 at time 𝑡,  𝑇𝑣𝑎𝑙  is 

the number of validation samples,  

α = 1.0 is the ridge regularization coefficient that controls 

model complexity. The trained ridge regression models were 

subsequently applied to the test dataset to generate final 

ensemble predictions as expressed in (25): 

𝑦̂𝑡,1
(𝑠𝑡𝑎𝑐𝑘)

= 𝑍𝑡𝛽̂𝑖 ,  𝑡 ∈ Test set                  (25) 

Multiple stacking configurations were constructed and 

evaluated, including TCN+LSTM, TCN+MTL, LSTM+MTL, 

and TCN+LSTM+MTL.   

2.7 Model Evaluation 

The performance of the models were evaluated on the test set 

using multiple evaluation metrics: 

 Root Mean Squared Error (RMSE) 

RMSE quantifies the square root of the average squared 

differences between predicted and actual values. It assigns 

bigger weights to larger errors. It is defined by (26). 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦̂𝑡 − 𝑦𝑡)2𝑁

𝑡=1                   (26) 

Mean Absolute Error (MAE) 

MAE determines the average magnitude of prediction errors 

without consideration of their direction as expressed by (27). It 

provides a direct interpretation of absolute deviations: 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦̂𝑡 − 𝑦𝑡|𝑁

𝑡=1      (27) 

Mean Absolute Percentage Error (MAPE) 

MAPE expresses prediction accuracy in percentage terms 

through normalization of absolute errors with respect to the 

actual values: It is expressed by (28). 

𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |

𝑦̂𝑡−𝑦𝑡

𝑦𝑡
|𝑁

𝑡=1      (28) 

Symmetric Mean Absolute Percentage Error (SMAPE) 

SMAPE provides a scale-independent alternative to MAPE. It 

symmetrically normalize absolute errors with respect to both 

predicted and actual values as defined by Equation 29. 

𝑆𝑀𝐴𝑃𝐸 =
100

𝑁
∑

|𝑦̂𝑡−𝑦𝑡|

(|𝑦𝑡|+|𝑦̂𝑡|)/2
𝑁
𝑡=1     (29) 

3. RESULTS AND DISCUSSION 
This section presents a comprehensive evaluation of the 

proposed ridge-regularized deep learning stacking ensemble 

for multivariate daily exchange rate forecasting. Model 

performance is assessed across three major currency 

pairsUSD/GHS, EUR/GHS, and GBP/GHS using four 

complementary evaluation metrics: RMSE, MAE, MAPE, and 

SMAPE. Comparative analysis is conducted against a 

traditional econometric baseline (VAR), standalone deep 

learning models (LSTM, TCN, and MTL), and multiple 

stacking configurations to demonstrate the robustness and 

effectiveness of the proposed framework. 

3.1 Overall Model Performance 

Table 1 reports the detailed forecasting performance of all 

models across individual currency pairs, while Table 2 

summarizes the mean performance across all three exchange 

rates. Figures 5–8 illustrate the mean RMSE, MAE, MAPE, 

and SMAPE values, respectively, enabling visual comparison 

of model ranking consistency across evaluation metrics. 

Across all metrics and currency pairs, the proposed 

Stack_TCN+LSTM+MTL ensemble consistently achieves the 

lowest forecasting errors. Specifically, it records the smallest 

mean RMSE (0.7488), MAE (0.5285), MAPE (3.75%), and 

SMAPE (3.64%), demonstrating superior predictive accuracy 

and stability relative to both standalone models and alternative 

ensemble configurations. This consistent dominance across 

scale-dependent and scale-independent metrics confirms the 

robustness of the proposed stacking framework. 

In contrast, the traditional VAR model exhibits substantially 

higher error levels, reflecting its limited capacity to model 

nonlinear dynamics and regime shifts that characterize foreign 

exchange markets in emerging economies. Similarly, 

standalone deep learning models, while outperforming VAR in 

most cases, show inferior performance compared to ensemble-

based approaches, highlighting the limitations of relying on a 

single architectural bias. 

3.2 Performance across Individual Currency 

Pairs 

USD/GHS Exchange Rate 

For the USD/GHS series, the Stack_TCN+LSTM+MTL 

ensemble achieves an RMSE of 0.8915, significantly 

outperforming VAR (6.59) and standalone LSTM (9.21). 

Percentage-based error metrics further reinforce this advantage, 

with SMAPE reduced to 4.78% compared to over 60% for 

VAR and more than 100% for LSTM. This demonstrates the 
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ensemble’s ability to track sharp movements and volatility 

clustering commonly observed in the USD/GHS market. 

 

EUR/GHS Exchange Rate 

Similar performance trends are observed for the EUR/GHS 

exchange rate. The proposed ensemble achieves an RMSE of 

0.5687 and MAPE of 2.77%, representing substantial 

improvements over both statistical and standalone deep 

learning baselines. The consistently low error values indicate 

strong generalization and reduced sensitivity to abrupt market 

fluctuations. 

 

GBP/GHS Exchange Rate 

For GBP/GHS, which exhibits relatively higher volatility and 

irregular fluctuations, the ensemble maintains robust 

performance with an RMSE of 0.7863 and SMAPE of 3.41%. 

Standalone models, particularly LSTM and MTL, struggle to 

adapt to these dynamics, recording significantly higher errors. 

This highlights the advantage of combining heterogeneous 

models that capture both short-term and long-term 

dependencies. 

 

 

 

3.3 Comparison of Standalone and 

Ensemble Models 
Among the standalone models, TCN emerges as the strongest 

performer, outperforming LSTM and MTL across all metrics. 

 This suggests that temporal convolutional structures are 

particularly effective in capturing short-term dependencies and 

local temporal patterns in exchange rate data. However, despite 

its relative strength, TCN alone remains inferior to all stacking 

configurations, indicating that convolutional representations 

benefit substantially from integration with recurrent and multi-

task learning architectures. 

The LSTM model records the poorest performance among deep 

learning approaches, with the highest mean RMSE (10.19) and 

SMAPE (101.93%). This behavior suggests overfitting and 

limited adaptability to rapidly changing market conditions, 

particularly when trained in isolation on highly volatile 

financial time series. 

The MTL model demonstrates mixed performance, performing 

competitively for USD/GHS but deteriorating for EUR/GHS 

and GBP/GHS. While shared representation learning offers 

some generalization benefits, it is insufficient on its own to 

handle complex cross-series interactions without 

complementary temporal modeling. 

Table 1. Evaluation results of each model across all currency pairs 

Model Currency Pair RMSE MAE MAPE SMAPE 

VAR USD/GHS 6.5921    6.3101   47.3500    62.6878 

VAR EUR/GHS 6.8154    6.5389   45.0837    58.7443 

VAR GBP/GHS 8.3674    8.0005   46.8195    61.7433 

TCN USD/GHS 2.8697    2.7310   20.6311    23.1667 

TCN EUR/GHS 4.2518    4.0555   27.9057    32.6461 

TCN GBP/GHS 6.4401    6.1460   35.9446    44.1611 

LSTM USD/GHS 9.2105    8.9899   68.2903   104.1396 

LSTM EUR/GHS 9.8288    9.6184   67.0919   101.3317 

LSTM GBP/GHS 11.5298   11.2471   66.6234   100.3155 

MTL USD/GHS 2.3179    2.2299   17.0247    18.6476 

MTL EUR/GHS 6.3914    6.2717   43.8697    56.3003 

MTL GBP/GHS 9.2325    9.0099   53.3915    73.0258 

Stack_TCN+LSTM USD/GHS 1.4927    1.1028    9.1393     8.4037 

Stack_TCN+LSTM EUR/GHS 1.0307    0.7066    5.2653     5.0399 

Stack_TCN+LSTM GBP/GHS 1.2214    0.8556    5.2930     5.1383 

Stack_TCN+MTL USD/GHS 1.2106    0.9415    7.3416     6.8989 

Stack_TCN+MTL EUR/GHS 0.5632    0.3726    2.6804     2.6332 

Stack_TCN+MTL GBP/GHS 0.8043    0.5989    3.5301     3.5169 

Stack_MTL+LSTM USD/GHS 1.1321    0.9120    6.4916     6.7583 

Stack_MTL+LSTM EUR/GHS 1.0112    0.9078    6.1636     6.3752 

Stack_MTL+LSTM GBP/GHS 1.8064    1.5952    9.0508     9.5523 

Stack_TCN+LSTM+MTL USD/GHS 0.8915    0.6173    5.0518     4.7807 

Stack_TCN+LSTM+MTL EUR/GHS 0.5687    0.3884    2.7690     2.7293 

Stack_TCN+LSTM+MTL GBP/GHS 0.7863    0.5798    3.4283     3.4103 

 

Table 2. Mean metric measure across all currency pairs for each model 

Model RMSE MAE MAPE SMAPE 

Stack_TCN+MTL+LSTM 0.7488 0.5285  3.7497     3.6401 

Stack_TCN +MTL 0.8594   0.6377    4.5174     4.3496 

Stack_TCN+LSTM 1.2482   0.8883    6.5659     6.1940 

Stack_MTL+LSTM 1.3166   1.1384    7.2353     7.5619 

TCN 4.5205   4.3108   28.1604    33.3247 

MTL 5.9806   5.8372   38.0953    49.3246 

VAR 7.2583   6.9499   46.4177    61.0585 

LSTM 10.1897   9.9518   67.3352   101.9289 
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Fig 5: Mean RMSE across all currency pairs for each model 

 

Fig 6: Mean MAE across all currency pairs for each model 

 

Fig 7: Mean MAPE across all currency pairs for each model 
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Fig 8: Mean SMAPE across all currency pairs for each model 

 

Fig 9: USD/GHS one-day ahead forecast by all models 

 

Fig 10: EUR/GHS one-day ahead forecast by all models 
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Fig 11: GBP/GHS one-day ahead forecast by all models

3.4 Effectiveness of the Stacking Framework 
The stacking ensembles consistently outperform their 

constituent base learners, confirming the effectiveness of the 

ensemble learning strategy. Among the evaluated 

configurations, Stack_TCN+MTL and Stack_TCN+LSTM 

rank second and third, respectively, while Stack_MTL+LSTM 

shows comparatively weaker performance due to the absence 

of convolutional temporal feature extraction. 

The superior performance of Stack_TCN+LSTM+MTL can be 

attributed to the complementary inductive biases of its base 

learners. Specifically, TCN captures short-term and local 

temporal dependencies through causal dilated convolutions, 

LSTM models long-term sequential dependencies via gated 

memory mechanisms, and MTL enhances generalization by 

leveraging shared information across related currency pairs. 

The ridge regression meta-learner further stabilizes predictions 

by optimally weighting base model outputs while mitigating 

overfitting through L2 regularization. 

Compared to VAR and standalone LSTM, the proposed 

ensemble achieves approximately 89.7% and 92.7% reductions 

in RMSE, respectively, underscoring its substantial predictive 

advantage.  

3.5 Forecast Trajectory Analysis 
Figures 9–11 present the one-day-ahead forecast trajectories for 

USD/GHS, EUR/GHS, and GBP/GHS. The stacked ensembles 

exhibit close alignment with observed exchange rate 

movements, effectively tracking both trend changes and short-

term fluctuations. In contrast, standalone models display 

noticeable lag and deviation during periods of sharp price 

movements, particularly under high volatility conditions. 

These visual results corroborate the quantitative findings and 

further demonstrate the ensemble’s ability to maintain stability 

and accuracy across diverse market regimes. 

3.6 Discussion and Implications 
The results provide strong empirical evidence that ridge-

regularized stacking ensembles significantly enhance 

multivariate exchange rate forecasting performance in 

emerging market contexts. By integrating heterogeneous deep 

learning architectures within a unified framework, the proposed 

model overcomes the limitations of individual learners and 

achieves improved robustness, accuracy, and generalization.  

From a practical perspective, the improved forecasting 

accuracy has important implications for central banks, financial 

institutions, and fintech firms operating in volatile currency 

environments. Enhanced exchange rate predictions can support 

more effective monetary policy analysis, risk management, 

hedging strategies, and automated trading systems. 

4. CONCLUSION 
This study proposed a ridge-regularized deep learning stacking 

ensemble for multivariate daily exchange rate forecasting, 

integrating Temporal Convolutional Networks (TCN), Long 

Short-Term Memory (LSTM), and Multi-Task Learning 

(MTL) architectures within a unified meta-learning framework. 

The proposed approach was designed to address the nonlinear 

dynamics, volatility, and cross-currency interdependencies that 

characterize foreign exchange markets in emerging economies, 

using the Ghana forex market as a representative case study.  

Comprehensive empirical evaluation on USD/GHS, 

EUR/GHS, and GBP/GHS exchange rates demonstrates that 

the proposed Stack_TCN+LSTM+MTL ensemble consistently 

outperforms both traditional econometric and standalone deep 

learning models across all evaluation metrics. The ensemble 

achieved the lowest mean RMSE (0.7488), MAE (0.5285), 

MAPE (3.75%), and SMAPE (3.64%), representing substantial 

error reductions of approximately 89.7% relative to the VAR 

baseline and 92.7% relative to standalone LSTM. These results 

confirm that individual deep learning architectures, while 

effective in isolation, are limited in their ability to fully capture 

the diverse temporal and cross-series patterns inherent in 

multivariate exchange rate data. 

The superior performance of the proposed framework is 

attributable to the complementary inductive biases of its base 

learners. TCN effectively captures short-term and local 

temporal dependencies, LSTM models long-term sequential 

behavior through gated memory mechanisms, and MTL 

enhances generalization by exploiting shared representations 

across related currency pairs. The ridge regression meta-learner 

plays a critical role in stabilizing ensemble predictions by 

optimally weighting base model outputs while mitigating 

overfitting through L2 regularization, thereby ensuring 

robustness under varying market conditions. 

The superior performance of the proposed framework is 

attributable to the complementary inductive biases of its base 

learners. TCN effectively captures short-term and local 

temporal dependencies, LSTM models long-term sequential 

behavior through gated memory mechanisms, and MTL 
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enhances generalization by exploiting shared representations 

across related currency pairs. The ridge regression meta-learner 

plays a critical role in stabilizing ensemble predictions by 

optimally weighting base model outputs while mitigating 

overfitting through L2 regularization, thereby ensuring 

robustness under varying market conditions. 

Beyond methodological contributions, the findings have 

important practical implications for policymakers, central 

banks, financial institutions, and fintech platforms operating in 

volatile currency environments. Improved multivariate 

exchange rate forecasts can support enhanced monetary policy 

analysis, more effective risk management and hedging 

strategies, improved foreign exchange pricing, and more 

reliable automated trading and decision-support systems. The 

results are particularly relevant for emerging markets, where 

exchange rate volatility poses significant challenges to 

economic planning and financial stability. 

 Despite its strong performance, this study has several 

limitations that suggest directions for future research. First, the 

framework relies solely on historical exchange rate data and 

does not incorporate exogenous macroeconomic indicators, 

geopolitical variables, or market sentiment information, which 

may further enhance predictive performance. Second, model 

evaluation was conducted in an offline forecasting setting; 

future studies should explore real-time and streaming 

implementations. Finally, future work will explore transformer 

and attention-based architectures, multi-horizon forecasting 

strategies, and the integration of macroeconomic and text-

based features 
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