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ABSTRACT

Forecasting exchange rate remains a major challenge due to
nonlinear dynamics, structural volatility, and complex cross-
currency interactions. Although deep learning models have
demonstrated strong predictive capability, however, the
individual architectures often specialize in limited temporal
patterns and may overfit volatile financial series. This study
proposes a hybrid multivariate stacking ensemble that
integrates Long Short-Term Memory (LSTM), Temporal
Convolutional Network (TCN), and Multi-Task Learning
(MTL) models with a ridge-regression meta-learner to enhance
predictive accuracy and stability. Daily EUR/GHS, GBP/GHS,
and USD/GHS exchange rates from January 2010 to September
2025 were modeled using a sliding-window, multi-input, multi-
output configuration. Performance was benchmarked against
standalone deep learning models and a Vector Auto-Regression
(VAR) baseline. Results show that the proposed hybrid
multivariate stacking ensemble (TCN+LSTM+MTL) model
achieves the lowest mean RMSE (0.7488), MAE (0.5285),
MAPE (3.75 percent), and SMAPE (3.64 percent), representing
approximately 89.7 percent and 92.7 percent RMSE reduction
compared to VAR and LSTM, respectively. The findings
confirm that combining specialized deep architectures with
regularized meta-learning significantly improves forecasting
accuracy and robustness in volatile financial markets and offers
insights for future research in cross-architecture fusion and
meta-learning for financial econometrics.
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1. INTRODUCTION

Financial markets are very important in the development of the
global economy. The forex (FX) market is an integral
component of the financial market. As international trades
continue to exist, exchange rates remain a crucial link between
national economies [1]. They influence macroeconomic
fundamentals, stability of capital flows and international
transactions. Hence, forecasting exchange rate dynamics and
trends is vital for investors and multinational firms to make
informed financial decisions, optimize portfolio strategies, and
manage exchange rate risks effectively [2]. Forecasting of
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exchange rate has attracted significant interest in academic
research and economic analysis [3]. Many scholars have carried
out research studies on exchange rate behavior [4-6]. Exchange
rate time series studies is a major aspect of time-series research.
This involves the assessment and forecast of fluctuation ranges
and trend changes in the exchange rate dynamics.

Various techniques have been employed to model exchange
rates. Fundamental analysis relies on economic theory to
identify variables that influence exchange rates in the long
term, such as trade imbalances, interest rate differentials, and
overall economic conditions of countries [7]. Technical
analysis focuses on recognizing patterns in historic data to
forecast future movements, often disregarding underlying
economic fundamentals [8]. Econometrics and time series
techniques such as vector autoregressive (VAR),
autoregressive integrated moving averages (ARIMAs) and
generalized  autoregressive  conditional  heteroscedastic
(GARCH) models, analyze historical data to capture temporal
dependencies and volatility structures in exchange rate
dynamics [9]. However, these conventional economic
approaches are limited in their ability to capture the
nonlinearities, structural shifts, and long range dependencies
characteristics associated with exchange rate time series [10].
These data are highly nonlinear, nonstationary, and volatile,
making accurate forecast of exchange rate fluctuations
extremely complicated. Exchange rate fluctuations are
influenced by both domestic and international economic
conditions, domestic and international economic conditions,
global market sentiment, political developments, and other
external influences. Additionally, factors such as market
participants’ psychological expectations, geopolitical tensions,
and financial crises often have significant impact on currency
valuations, introducing volatility and complexity into exchange
rate data [11]. The limitations of traditional economic models
to forecast exchange rates have prompted the need for
alternative approaches in modeling exchange rate dynamics
[12]. Recent advancements in machine learning (ML) and deep
learning (DL) techniques are proving to be promising in
improving forecasting accuracy [13]. ML and DL models are
gaining widespread adoption for their ability to analyze large
datasets and capture complex patterns to enhance exchange rate
forecasting [14]. DL models use several neurons and hidden
layers to analyze sequential data, enabling them to generate
better forecasts than economic models [15]. They provide
computational power and functional flexibility necessary to
detect latent patterns in complex datasets [16]. Aydin &
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Cavdar [17] showed in their study that Artificial Neural
Networks (ANNs) provided predictive performance that is
superior to VAR models in exchange rate forecasting. Dautel et
al. [18] systematically compared LSTM networks and Gated
Recurrent Units (GRUs) with traditional econometric models
like VAR. The study concluded that the deep learning models
outperformed traditional models in exchange rate forecasting.
Garcia et al. [19] compared the predictive performance of
ARIMA and LSTM on foreign exchange forecasting tasks. The
outcome of the study showed that LSTM offers superior
predictive accuracy.  Zhao et al. [20] compared the
performance of ARIMA, LSTM, and Gated Recurrent Unit
(GRU) models in exchange rates forecasting. The findings from
the study indicated that the LSTM model delivers better
forecasting accuracy than ARIMA, which underscores the
potential of DL models in financial time series forecasting.
Although individual DL models have achieved considerable
success in financial forecasting, the effectiveness of individual
DL models remains limited as they are susceptible to issues
such as overfitting and the inability to fully exploit
complementary information across diverse architectures. When
individual DL models are trained on highly volatile financial
time series data like exchange rates, they can learn both
meaningful patterns and random noise resulting in poor
generalization, and hence poor performance on unseen data
[21-22]. Standalone DL model restricts learning process to a
narrow feature domain. For instance recurrent models like
LSTM gives priority to long-term temporal dependencies,
convolutional models such as Temporal Convolutional
Network (TCN) put emphasize on short-term local patterns,
and Multi-Task Learning (MTL) networks leverage useful
information contained across multiple related tasks [23-24].
This specializations of DL architectures implies that individual
model may not be able to capture diverse and interacting
dependencies found in multivariate financial data holistically.
Consequently, lack of cross-architectural integration limits
ability of individual models to leverage complementary
information that might improve robustness and adaptability
across varying market conditions reducing the potential to
achieve generalizable financial predictions [25].

In recent years, the use of hybrid models that combine ML and
DL techniques has increased significantly in FX market
prediction. Hybrid models have demonstrated improved
performance. Lin et al. [26] proposed a hybrid model that
integrated complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) and multilayer long short-
term memory (MLSTM) networks and the findings showed that
the hybrid model effectively captured complex correlations in
exchange rate data, and improved performance. Islam and
Hossain [27] integrated GRU and LSTM neural network and
found the hybrid model to be superior to simple moving
average, LSTM, and GRU models. He et al. [28] proposed an
ensemble model that integrated ARMA, CNN, and LSTM to
capture both linear and nonlinear features in financial time
series. The results showed that the ensemble model performed
better than the individual models, including LSTM and CNN.
Sina et al. [29] performed a systematic review that analyzed
twenty one (21) studies. The study concluded that hybrid
forecasting methods perform better individual models. Gu et al.
[30] created a hybrid model that integrated LSTM and GRU
within an AdaBoost framework. The results from the study
indicated that the ensemble model produced an improved
performance in forecasting exchange-rate compared to
standalone models.
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This study builds on prior research by developing and
evaluating hybrid multivariate ensemble stacking framework
designed to augment forecasting of daily exchange rate. The
proposed framework integrates forecasts from deep learning
models including Temporal Convolutional Network (TCN),
Long Short-Term Memory (LSTM), and Multi-Task Learning
using ridge regression as a meta-learner. While each of these
DL architecture has shown a strong capabilities across diverse
time series forecasting tasks, prior research has rarely explored
the effectiveness of integrating their complementary inductive
biases which are causal dilated convolutions, sequential
memory, and shared multi-task representations within a unified
multivariate stacking framework designed for exchange rate
forecasting. Hence, there is a limited empirical evidence
regarding which heterogeneous model combinations yield the
most substantial forecasting improvements. Also, existing
research provides limited insight into how a simple yet robust
technique like ridge regression can serve as an effective meta-
learner for aggregating outputs from complex DL models while
ensuring generalization, computational efficiency, and
interpretability. To address these gaps the current study
systematically integrating TCN, LSTM, and MTL models
within a ridge regression based stacking ensemble to achieve
an improved predictive performance in exchange rate
forecasting.

2. METHOD
2.1 Dataset Description

This study conducted an empirical analysis using daily closing
prices of three (3) major currency pairs - EUR/GHC,
GBP/GHC, and USD/GHC obtained from the Bank of Ghana
database (https://www.bog.gov.gh). Each currency pair data
range from 4th January 2010 to 17% September 2025,
comprising 3894 entries.  The dataset was partitioned
sequentially into training, validation, and test sets in a 70:15:15
ratio.

2.2 Data Standardization

The z-score technique illustrated in (1) was applied to scale the
data to ensure zero mean and unit variance before model
training. The transformation was subsequently inverted to
recover values on the original scale for model evaluation.

%= "?T” 1

u is mean of the training data

o denote standard deviation of the training data.

2.3 Sliding Window

The sliding window approach with a lookback window L and
forecast horizon H was used to convert the exchange rate time
series data into a supervised MIMO (multi-input multi-output)
learning tasked. For each time step t, an input window of length
L was used to predict the next H steps as formulated in (2) and
3).

Xe = [Xeop, Xeop41, s Xe—1] (2)

Yt = [xtrxt+1r ---,xt+H—1] (3)

X, € R and M = number of currency pairs = 3.

L =30, and H = 1 was used in this study. The resulting
supervised dataset is defined in (4):

D = {(Xe, YOI “4)

2.4 Baseline Model

Vector auto-regression (VAR) model was implemented as the
baseline statistical forecasting framework. It is a multivariate
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time series model designed to capture dynamic linear
interdependencies across various endogenous variables. It was
introduced by Sims [31]. VAR model extends univariate
autoregressive (AR) framework to systems of equations. It
models each variable as a linear function of its own past values
and the past values of all other variables in the system as shown
in (5) and (6). VAR is very popular and widely used in
macroeconomics, finance, and forecasting. It enables flexible,
data-driven representation of dynamic interactions without any
strong a priori structural assumptions imposition. Given M-
dimensional time series.

Xe = [x1e, %26 50+ o Xme] %)
VAR model is expressed as:
Xe=c+ Z?:lAiXt—l + & (6)

Where ¢ represents M X 1 vector of intercept terms, A;(i =
1,...,p) denotes M X M coefficient matrices characterizing
linear lag-i interdependences among endogenous variables, p
is optimal lag order determined based on Akaike Information
Criterion (AIC), and ¢; denotes white-noise error term.

2.5 Deep Learning Models

Three DL architectures comprising Long Short-Term Memory
(LSTM), Temporal Convolutional Network (TCN), and Multi-
Task Learning (MTL) network were developed to forecast
exchange rate. These architectures are designed to capture non-
linear temporal dependencies and cross-series interactions in
the exchange rate market. The models were trained on
standardized input sequences generated by the sliding window
transformation of historical exchange rate data. Model
parameters were optimized using the Adam optimizer to
minimize the mean squared error (MSE) loss function. The
models were trained to minimize MSE with L2 regularization.
The resulting loss function as shown by (7) penalizes both large
prediction errors and excessively large parameter magnitudes
to ensure good generalization.

£(0) = 7 Tty llye = 9ell3 + A Zweollwll3 (7)

2.5.1 Long Short-Term Memory (LSTM)

LSTM architecture is an extension of conventional recurrent
neural networks (RNNs) that incorporate memory cells and
gating mechanisms to alleviate vanishing and exploding
gradient problems to enable long-range sequence modeling.
Each LSTM cell maintains two internal states, namely a cell
state and a hidden state. Together, the two internal states control
long and short-term memory propagation across time [32]. For
a time step t, given the input vector, X;, the input gate, forget
gate, and output gate are computed using (8)—(10). The
candidate cell state is generated with (11). Then the cell state
and hidden state are updated using (12) and (13), respectively:

ir = o(Wixe + Uihy + b;) (®)

fr = o(Wyx, + Uphy + by) )

0 = o(Wyoxy + Uyhy + by) (10)

& = tanh(W,x, + U.h, + b,) an

¢t = ftOct-q + 1 OC (12)

he = 0,Otanh(c;) (13)

Where:

e i.fi, and o, are input, forget, and output gates
respectively.

e  (; is candidate memory,
e ¢, is cell state update, and h, represents hidden states
update,
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e () denotes sigmoid activation function and tanh(-)
hyperbolic tangent function,

e W, and U, are the input and recurrent weight
matrices, and b, is the corresponding biases.

e (O represents element-wise multiplication

The implemented LSTM model architecture, as shown in Fig.
1, used a deep sequential architecture. It is composed of two
stacked LSTM layers, followed by batch normalization,
dropout, and fully connected dense mappings. The input tensor
has a shape of (L, M), where L is the number of lookback time
steps and M=3 is the number of exchange rate pairs. The
architecture consists of two LSTM layers, each followed by a
batch normalization block to stabilize hidden state activations
and improve training efficiency by reducing internal covariate
shift. The first LSTM layer consists of 128 hidden units with an
output sequence H( € RL X128 The second LSTM Layer has
64 hidden units, generating a final temporal embedding h™®) €
R%*. A dropout layer with a rate of 0.25 was employed to
reduce overfitting by randomly deactivating neurons during
training. A dense layer with 128 neurons and ReLU activation
serves as a fully connected layer, converting the temporal
embedding into a nonlinear feature space. The final output
layer is a linear dense mapping with M units with a forecast as
indicated in (14). The overall network defines a nonlinear
mapping function as shown in (15).

Pesr = Wy h® + bl (14)
Wo(f ) and béf ) are learnable weight matrix and bias vector

respectively.

Ver1 = frsrm(Xe, ©) (15)
Where O represents all learnable weights and biases of the
network
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Fig 1: LSTM Architecture

2.5.2 Temporal Convolutional Network (TCN)

63



TCN is a convolutional architecture designed specifically for
sequential and time-series modeling. They effectively capture
long-range temporal dependencies while ensuring parallelized
sequence processing by using dilated convolutional filters with
controlled receptive fields [33]. Each TCN layer applies 1D
causal convolution to ensure that predictions at time t only
depend on inputs up to t. For a given layer [, the convolution
output is shown in (16).

K-1
% =¢(Z W hz:”+b“’> e
k=0

Where:

e K is the kernel size (set to 3),

° VI/k(l) are the convolutional filters,

e ¢(:)is the ReLU activation,

. hgo) = x¢
The TCN architecture implemented as shown in Fig. 2 consists
of processed sequential inputs of shape (L, M) followed by a
Conv1D layer with a kernel size of 3 and 64 filter with a ReLU
activation and an L2 weight regularizer to ensure smooth
training and avoid overfitting. Batch normalization is then
applied to stabilize feature distributions and accelerate
convergence. This is followed by a second Conv1D layer with
64 filters, a kernel size of 3, and ReLU activation, and a second
Batch normalization to boost training stability. A dropout layer
with a rate of 0.25 is then applied to mitigate overfitting. A
Global Average Pooling (hgsp) as indicated in (17) is
employed to aggregate temporal information by computing the
mean across time steps. The aggregated information is passed
to a dense layer comprised of 128 neurons, ReLU activation,
and L2 regularization. The architecture has a final output layer
with a linear dense consisting of M units, which generates the
multi-output forecasting as shown in (18).

L

1
heap = ZZ hEL) 17)
t=1
Veer = Wy hoap + by (18)
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Fig. 2: TCN architecture
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2.5.3 Multi-Task Learning (MTL) Network

MTL is a DL paradigm that is designed to enable training of a
single model to perform multiple related tasks simultaneously.
Instead of training independent models for each tasks, it
exploits shared representations to achieve efficient learning and
generalization. It learns a common latent representation across
all series and incorporates distinct task-specific output heads
which facilitates effective information sharing and preserving
task-level specialization [34].

The model takes the exchange rate series as input and outputs
the one-day-ahead exchange rates. The MTL Architecture is
shown in Fig 3. The architecture consists of a Shared Dense
layer (hg) as shown in (19) and it comprised of 256 units with
ReLU activation and L2 regularization. The shared dense layer
is followed by batch normalization and dropout, followed by
three separate dense layers with 128 units for task-specific
branches: for each currency pair (m=1, 2, and 3), the model
used a dedicated task-specific branch as shown in (20). The
three scalar outputs are then combined to form the multi-output
prediction vector (V1) as indicated in (21).

hg = ReLU(W;z; + bg) (19)

z; denotes the input feature vector, W;and by are the
corresponding weight matrix and bias term, and hg represents
the shared latent representation.

Ry = ReLU (W hg + byy) (20)
98 = wh, + by, @1)

Where h,, is the task-specific hidden features, and }751';) is the

predicted value for task m.
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Fig. 3: MTL Architecture

2.6 Stacking Framework
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A stacking framework is an ensemble learning architecture that various base learners are first trained independently on the
combines multiple predictive models to achieve better same dataset. Each of the base learner generate its own
performance than any single model. In a stacking framework, predictions, which are treated as meta-features representing
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different perspectives on the data. The meta-features are used
as inputs to a meta-learner, which learns to optimally combine
the outputs of the base learners. The meta-learner identifies
systematic patterns in the predictive behavior of each base
model across instances, and learns to assign appropriate
weights or transformations to their predictions to generate a
more accurate final prediction [35]. The stacking framework in
this work is shown in Fig 4.

Letting ¥, € RM denote the target vector of M currency pairs
at time t. Then for each model k € {1, 2, 3} which corresponds
to the LSTM, TCN, and MTL networks, one-step ahead
forecast on the validation set as shown in (22).

2% = £, (X3 6,0) (22)

f« () denotes the nonlinear mapping learned by the k™ deep
network with parameters 8, and X, is the multivariate lagged
input vector constructed via a sliding window mechanism. The
base models' predictions on the validation dataset were
concatenated column-wise to form the stacking feature matrix,
which served as the input to the meta-learner as defined in (23).

Zt — [?t(l)'?t(Z)'?t(S)] € ]RMX3 (23)

Ridge regression model was used as meta-learner to learn a
linear combination of the predictions of the base model that
minimized the MSE on the validation data. Ridge regression
was selected as the meta-learner because of its favorable bias -
variance trade off and numerical stability when combining
predictions from correlated deep learning architectures.

For each currency pair i€ {1,..,M} the meta-learner
estimated coefficients 5; = [Bi1, Biz, Biz]T by solving (24)

. va 2
n};_nzizf(yt,i—ztﬁi) +allgl (4

¥t.i is the observed value of currency pair i at time t, T,q; is
the number of validation samples,

o = 1.0 is the ridge regularization coefficient that controls
model complexity. The trained ridge regression models were
subsequently applied to the test dataset to generate final
ensemble predictions as expressed in (25):

)A’t(,sltaCk) =Z,B;, t € Test set 25)

Multiple stacking configurations were constructed and
evaluated, including TCN+LSTM, TCN+MTL, LSTM+MTL,
and TCN+LSTM+MTL.

2.7 Model Evaluation

The performance of the models were evaluated on the test set
using multiple evaluation metrics:

Root Mean Squared Error (RMSE)

RMSE quantifies the square root of the average squared
differences between predicted and actual values. It assigns
bigger weights to larger errors. It is defined by (26).

1 ~
RMSE = |- XL, — yo)? (26)

Mean Absolute Error (MAE)

MAE determines the average magnitude of prediction errors
without consideration of their direction as expressed by (27). It
provides a direct interpretation of absolute deviations:
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1 -
MAE =~ 5119 — il @7
Mean Absolute Percentage Error (MAPE)

MAPE expresses prediction accuracy in percentage terms
through normalization of absolute errors with respect to the
actual values: It is expressed by (28).

MAPE =223, [ (28)

Yt

Symmetric Mean Absolute Percentage Error (SMAPE)

SMAPE provides a scale-independent alternative to MAPE. It
symmetrically normalize absolute errors with respect to both
predicted and actual values as defined by Equation 29.

100 |9e=vel
SMAPE = —YN 2t 2
N 2Lyl +9eD/2 (29)

3. RESULTS AND DISCUSSION

This section presents a comprehensive evaluation of the
proposed ridge-regularized deep learning stacking ensemble
for multivariate daily exchange rate forecasting. Model
performance is assessed across three major currency
pairsUSD/GHS, EUR/GHS, and GBP/GHS using four
complementary evaluation metrics: RMSE, MAE, MAPE, and
SMAPE. Comparative analysis is conducted against a
traditional econometric baseline (VAR), standalone deep
learning models (LSTM, TCN, and MTL), and multiple
stacking configurations to demonstrate the robustness and
effectiveness of the proposed framework.

3.1 Overall Model Performance

Table 1 reports the detailed forecasting performance of all
models across individual currency pairs, while Table 2
summarizes the mean performance across all three exchange
rates. Figures 5-8 illustrate the mean RMSE, MAE, MAPE,
and SMAPE values, respectively, enabling visual comparison
of model ranking consistency across evaluation metrics.
Across all metrics and currency pairs, the proposed
Stack. TCN+LSTM+MTL ensemble consistently achieves the
lowest forecasting errors. Specifically, it records the smallest
mean RMSE (0.7488), MAE (0.5285), MAPE (3.75%), and
SMAPE (3.64%), demonstrating superior predictive accuracy
and stability relative to both standalone models and alternative
ensemble configurations. This consistent dominance across
scale-dependent and scale-independent metrics confirms the
robustness of the proposed stacking framework.

In contrast, the traditional VAR model exhibits substantially
higher error levels, reflecting its limited capacity to model
nonlinear dynamics and regime shifts that characterize foreign
exchange markets in emerging economies. Similarly,
standalone deep learning models, while outperforming VAR in
most cases, show inferior performance compared to ensemble-
based approaches, highlighting the limitations of relying on a
single architectural bias.

3.2 Performance across Individual Currency
Pairs

USD/GHS Exchange Rate

For the USD/GHS series, the Stack TCN+LSTM-+MTL
ensemble achieves an RMSE of 0.8915, significantly
outperforming VAR (6.59) and standalone LSTM (9.21).
Percentage-based error metrics further reinforce this advantage,
with SMAPE reduced to 4.78% compared to over 60% for
VAR and more than 100% for LSTM. This demonstrates the

66



ensemble’s ability to track sharp movements and volatility
clustering commonly observed in the USD/GHS market.

EUR/GHS Exchange Rate

Similar performance trends are observed for the EUR/GHS
exchange rate. The proposed ensemble achieves an RMSE of
0.5687 and MAPE of 2.77%, representing substantial
improvements over both statistical and standalone deep
learning baselines. The consistently low error values indicate
strong generalization and reduced sensitivity to abrupt market
fluctuations.

GBP/GHS Exchange Rate

For GBP/GHS, which exhibits relatively higher volatility and
irregular  fluctuations, the ensemble maintains robust
performance with an RMSE of 0.7863 and SMAPE of 3.41%.
Standalone models, particularly LSTM and MTL, struggle to
adapt to these dynamics, recording significantly higher errors.
This highlights the advantage of combining heterogeneous
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3.3 Comparison of Standalone and
Ensemble Models

Among the standalone models, TCN emerges as the strongest
performer, outperforming LSTM and MTL across all metrics.
This suggests that temporal convolutional structures are
particularly effective in capturing short-term dependencies and
local temporal patterns in exchange rate data. However, despite
its relative strength, TCN alone remains inferior to all stacking
configurations, indicating that convolutional representations
benefit substantially from integration with recurrent and multi-
task learning architectures.

The LSTM model records the poorest performance among deep
learning approaches, with the highest mean RMSE (10.19) and
SMAPE (101.93%). This behavior suggests overfitting and
limited adaptability to rapidly changing market conditions,
particularly when trained in isolation on highly volatile
financial time series.

models that capture both short-term and long-term The MTL model demonstrates mixed performance, performing
dependencies. competitively for USD/GHS but deteriorating for EUR/GHS
and GBP/GHS. While shared representation learning offers
some generalization benefits, it is insufficient on its own to
handle  complex  cross-series interactions  without
complementary temporal modeling.
Table 1. Evaluation results of each model across all currency pairs
Model | Currency Pair RMSE MAE MAPE SMAPE
VAR USD/GHS 6.5921 6.3101 47.3500 62.6878
VAR EUR/GHS 6.8154 6.5389 45.0837 58.7443
VAR GBP/GHS 8.3674 8.0005 46.8195 61.7433
TCN USD/GHS 2.8697 2.7310 20.6311 23.1667
TCN EUR/GHS 42518 4.0555 27.9057 32.6461
TCN GBP/GHS 6.4401 6.1460 35.9446 44.1611
LSTM USD/GHS 9.2105 8.9899 68.2903 104.1396
LSTM EUR/GHS 9.8288 9.6184 67.0919 101.3317
LSTM GBP/GHS 11.5298 11.2471 66.6234 100.3155
MTL USD/GHS 2.3179 2.2299 17.0247 18.6476
MTL EUR/GHS 6.3914 6.2717 43.8697 56.3003
MTL GBP/GHS 9.2325 9.0099 53.3915 73.0258
Stack TCN+LSTM USD/GHS 1.4927 1.1028 9.1393 8.4037
Stack TCN+LSTM EUR/GHS 1.0307 0.7066 5.2653 5.0399
Stack TCN+LSTM GBP/GHS 1.2214 0.8556 5.2930 5.1383
Stack TCN+MTL USD/GHS 1.2106 0.9415 7.3416 6.8989
Stack TCN+MTL EUR/GHS 0.5632 0.3726 2.6804 2.6332
Stack TCN+MTL GBP/GHS 0.8043 0.5989 3.5301 3.5169
Stack MTL+LSTM USD/GHS 1.1321 0.9120 6.4916 6.7583
Stack MTL+LSTM EUR/GHS 1.0112 0.9078 6.1636 6.3752
Stack MTL+LSTM GBP/GHS 1.8064 1.5952 9.0508 9.5523
Stack TCN+LSTM+MTL USD/GHS 0.8915 0.6173 5.0518 4.7807
Stack TCN+LSTM+MTL EUR/GHS 0.5687 0.3884 2.7690 2.7293
Stack TCN+LSTM+MTL GBP/GHS 0.7863 0.5798 3.4283 3.4103
Table 2. Mean metric measure across all currency pairs for each model
Model RMSE MAE MAPE SMAPE
Stack. TCN+MTL+LSTM 0.7488 0.5285 3.7497 3.6401
Stack TCN +MTL 0.8594 0.6377 4.5174 4.3496
Stack TCN+LSTM 1.2482 0.8883 6.5659 6.1940
Stack MTL+LSTM 1.3166 1.1384 7.2353 7.5619
TCN 4.5205 4.3108 28.1604 33.3247
MTL 5.9806 5.8372 38.0953 49.3246
VAR 7.2583 6.9499 46.4177 61.0585
LSTM 10.1897 9.9518 67.3352 101.9289
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Fig 5: Mean RMSE across all currency pairs for each model
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Fig 10: EUR/GHS one-day ahead forecast by all models
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Fig 11: GBP/GHS one-day ahead forecast by all models

3.4 Effectiveness of the Stacking Framework
The stacking ensembles consistently outperform their
constituent base learners, confirming the effectiveness of the
ensemble learning strategy. Among the evaluated
configurations, Stack TCN+MTL and Stack TCN+LSTM
rank second and third, respectively, while Stack MTL+LSTM
shows comparatively weaker performance due to the absence
of convolutional temporal feature extraction.

The superior performance of Stack TCN+LSTM+MTL can be
attributed to the complementary inductive biases of its base
learners. Specifically, TCN captures short-term and local
temporal dependencies through causal dilated convolutions,
LSTM models long-term sequential dependencies via gated
memory mechanisms, and MTL enhances generalization by
leveraging shared information across related currency pairs.
The ridge regression meta-learner further stabilizes predictions
by optimally weighting base model outputs while mitigating
overfitting through L2 regularization.

Compared to VAR and standalone LSTM, the proposed
ensemble achieves approximately 89.7% and 92.7% reductions
in RMSE, respectively, underscoring its substantial predictive
advantage.

3.5 Forecast Trajectory Analysis

Figures 9—11 present the one-day-ahead forecast trajectories for
USD/GHS, EUR/GHS, and GBP/GHS. The stacked ensembles
exhibit close alignment with observed exchange rate
movements, effectively tracking both trend changes and short-
term fluctuations. In contrast, standalone models display
noticeable lag and deviation during periods of sharp price
movements, particularly under high volatility conditions.
These visual results corroborate the quantitative findings and
further demonstrate the ensemble’s ability to maintain stability
and accuracy across diverse market regimes.

3.6 Discussion and Implications

The results provide strong empirical evidence that ridge-
regularized stacking ensembles significantly enhance
multivariate exchange rate forecasting performance in
emerging market contexts. By integrating heterogeneous deep
learning architectures within a unified framework, the proposed
model overcomes the limitations of individual learners and
achieves improved robustness, accuracy, and generalization.
From a practical perspective, the improved forecasting
accuracy has important implications for central banks, financial

institutions, and fintech firms operating in volatile currency
environments. Enhanced exchange rate predictions can support
more effective monetary policy analysis, risk management,
hedging strategies, and automated trading systems.

4. CONCLUSION

This study proposed a ridge-regularized deep learning stacking
ensemble for multivariate daily exchange rate forecasting,
integrating Temporal Convolutional Networks (TCN), Long
Short-Term Memory (LSTM), and Multi-Task Learning
(MTL) architectures within a unified meta-learning framework.
The proposed approach was designed to address the nonlinear
dynamics, volatility, and cross-currency interdependencies that
characterize foreign exchange markets in emerging economies,
using the Ghana forex market as a representative case study.

Comprehensive  empirical evaluation on USD/GHS,
EUR/GHS, and GBP/GHS exchange rates demonstrates that
the proposed Stack TCN+LSTM+MTL ensemble consistently
outperforms both traditional econometric and standalone deep
learning models across all evaluation metrics. The ensemble
achieved the lowest mean RMSE (0.7488), MAE (0.5285),
MAPE (3.75%), and SMAPE (3.64%), representing substantial
error reductions of approximately 89.7% relative to the VAR
baseline and 92.7% relative to standalone LSTM. These results
confirm that individual deep learning architectures, while
effective in isolation, are limited in their ability to fully capture
the diverse temporal and cross-series patterns inherent in
multivariate exchange rate data.

The superior performance of the proposed framework is
attributable to the complementary inductive biases of its base
learners. TCN effectively captures short-term and local
temporal dependencies, LSTM models long-term sequential
behavior through gated memory mechanisms, and MTL
enhances generalization by exploiting shared representations
across related currency pairs. The ridge regression meta-learner
plays a critical role in stabilizing ensemble predictions by
optimally weighting base model outputs while mitigating
overfitting through L2 regularization, thereby ensuring
robustness under varying market conditions.

The superior performance of the proposed framework is
attributable to the complementary inductive biases of its base
learners. TCN effectively captures short-term and local
temporal dependencies, LSTM models long-term sequential
behavior through gated memory mechanisms, and MTL
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enhances generalization by exploiting shared representations
across related currency pairs. The ridge regression meta-learner
plays a critical role in stabilizing ensemble predictions by
optimally weighting base model outputs while mitigating
overfitting through L2 regularization, thereby ensuring
robustness under varying market conditions.

Beyond methodological contributions, the findings have
important practical implications for policymakers, central
banks, financial institutions, and fintech platforms operating in
volatile currency environments. Improved multivariate
exchange rate forecasts can support enhanced monetary policy
analysis, more effective risk management and hedging
strategies, improved foreign exchange pricing, and more
reliable automated trading and decision-support systems. The
results are particularly relevant for emerging markets, where
exchange rate volatility poses significant challenges to
economic planning and financial stability.

Despite its strong performance, this study has several
limitations that suggest directions for future research. First, the
framework relies solely on historical exchange rate data and
does not incorporate exogenous macroeconomic indicators,
geopolitical variables, or market sentiment information, which
may further enhance predictive performance. Second, model
evaluation was conducted in an offline forecasting setting;
future studies should explore real-time and streaming
implementations. Finally, future work will explore transformer
and attention-based architectures, multi-horizon forecasting
strategies, and the integration of macroeconomic and text-
based features
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