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ABSTRACT 
As we know, the energy obtained from sun is intermittent in nature 

hence its generation is affected by rapidly changing weather 

conditions. Hence to balance the supply demand and to improve 

the accuracy and efficiency of the system, forecasting the solar 

energy highly necessitates. In view of this, different photovoltaic 

power forecasting techniques using machine learning models, 

different data pre-processing techniques and the evaluation 

metrices are discussed. Further to improve the system 

performance and efficiency quality data input which is pre-

processed is highly required. This paper discusses the 

comprehensive review of different solar forecasting techniques 

along with traditional forecasting techniques and a comparison 

review of ML models, respective algorithms used and various 

techniques for preprocessing the data are presented. Further, 

different suite metrices for assessing the performance of solar 

power forecasting is also presented. 

Keywords 
Photovoltaic, Power forecasting, Data pre-processing, Machine 

learning, Metrics. 

1. INTRODUCTION 
The necessity of precise and trustworthy PV forecasting 

techniques arose from the growing integration of solar 

photovoltaic (PV) systems into contemporary energy 

infrastructures. Grid stability, energy market operations, and the 

best possible integration of renewable energy sources all depend 

on accurate forecasting.  The most effective forecasting methods 

that is using Machine Learning models because of their capacity 

to represent the intricate, nonlinear relationships present in solar 

energy generation. 

Although a lot of research has been done on the creation and 

improvement in ML algorithms for photovoltaic power 

forecasting, data preprocessing plays an equally significant but 

frequently overlooked role. By converting noisy, unstructured, 

and incomplete data into an understandable format that can be 

analysed, data preprocessing serves as a link between the 

acquisition of raw data and model training. 

In [1] demonstration of ANN16 model is done which shows 

ANN16 model yields the best MAE-Mean absolute Error, RMSE-

Root Mean Square value, and coefficient of determination (R2) 

with values of 0.4693, 0.8816 W, and 0.9988, respectively. In [2] 

it is also been discussed that hybrid models that combines with 

ANN models with traditional linear regression, where RMSE, 

MAE, Mean Bias Error and correlation coefficient values of 2.74, 

2.09, 0.01 and 0.932, respectively, performed better. A new 

ESDLS-SVR model efficiently manages seasonal influence by 

defining the decomposition data using the seasonal decomposition 

technique [3]. In [4], it is discussed that, a low-pass filter is 

constructed to model the annual cycle of the solar irradiation with 

power time series (i.e., the corresponding clear sky values) using 

a Fourier transformation because of smoothness, flexibility, and 

inherent periodicity. A predictive accuracy of roughly 90%, the 

ANN model in S1 currently yields the most accurate results for 

solar power. When predicting solar power separately at different 

time series, ANN shows the better performance compared to other 

traditional models [5]. The LSTM is more efficient and precise for 

the prediction process of power generation, and these are 

characterized by their generality and simplicity. In ideal weather, 

the former can predict the satisfactory power value at 15-minute 

intervals, while in non-ideal weather, it can precisely predict the 

power trend at 1-hour intervals [6]. Therefore, developing precise 

and reliable forecasting systems requires a methodical grasp of 

preprocessing techniques, which range from feature selection and 

time series handling to data transformation and cleaning [7]. It 

should to be noted that for the model training for forecasting, 70 

and 30% of the data set are used for training and validation 

respectively [8]. Consolidating existing knowledge in this area, 

highlighting best practices, identifying common problems, and 

offering a framework for further study on data-driven solar 

forecasting techniques a detailed review of different methods used 

for solar power forecasting along with the different data 

preprocessing are presented. Further, to evaluate the performance 

of the solar power forecasting the review of different metrics are 

also discussed in the last part of this paper. 

2. ML MODELS FOR SOLAR POWER 

FORECASTING 
Over the years, numerous machine learning (ML)models are 

investigated and assessed for forecasting the solar energy. The 

forecasting capabilities, interpretability, data requirements, and 

complexity of these models vary. The various kinds of machine 

learning models for forecasting the solar power are summarized 

here in categories as follows in Table. 1 
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Table: 1 Summary of ML Models for Solar Power Forecasting 

Sl. 

No 

Author/Year Type of Models Benefits Drawbacks Application 

1. Mohammed 

Abuella & Badrul 

Choudhry, 2015 

[9] 

Multiple Linear 

Regression 

Model 

Easy to understand and 

comprehend, 

Quick training, 

Better performance 

and is linearly 

separable. 

In adequate results 

for nonlinear data 

Outlier-sensitive. 

Short-term 

forecasting under 

clear skies; 

 baseline forecasting. 

2. Valeriy V , 

Gavrishchaka, 

et. Al, 2001 [10] 

SVM 

Support Vector 

Machines 

 

In high-dimensional 

spaces, 

Effective Radial Basis 

Kernal-RBF performs 

better 

working with nonlinear 

data. 

computationally 

demanding 

and calls for 

meticulous 

parameter 

adjustment. 

(e.g., kernel, C) 

Using weather data 

to forecast the 

hours and days 

ahead. 

3. Neha Singh, 

Satyaranjan Jena, 

et al, 2022 [11] 

Decision Tree Simple to understand 

and picture, Managing 

nonlinear connections. 

 

prone to overfitting, 

Poor performance in 

generalization on 

unseen data. 

Rapid power 

output estimation 

in a span of weather 

conditions. 

4. Rathika 

Senthil kumar, 

P S Meeram et al, 

2025 [12] 

Random Forest     Better adaption     

capability of the 

algorithm, Strong 

against noise and 

overfitting,  

Addresses feature 

importance and 

missing values. 

Slower prediction 

and training than 

single tree models, 

less comprehensible. 

Accurate forecasting 

for the coming 

day based on 

historical power, 

irradiance, 

and weather data. 

5. Zhe Song, 

Fu Xiao, 

et al, 2025, [13] 

Gradient 

Boosting Machines 

(GBM) 

• XGBoost 

• LightGBM 

• CatBoost 

Efficient solar 

power 

management 

and dispatch 

Needs more 

processing 

power than 

simpler models 

prone to overfitting if 

improperly adjusted. 

Forecasting 

in the short 

and medium term 

using historical 

power and 

structured weather 

data. 

6. Nor Azuana 

Ramli, 

Nurul Haniz 

Azhan 

et al, 2019 [14] 

K-Nearest Neighbour 

(KNN) 

Better prediction 

results compared to 

other models, Easy to 

use and efficient with 

 regional patterns 

Sluggish when 

making predictions 

for big datasets, 

In 

high-dimensional 

spaces, 

poor performance. 

Using historical 

data to forecast 

similar  

weather conditions. 
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7. R. Asghar, 

F. R. Fulginei, et 

al, 

2024 [15] 

Deep Learning Models 

and Neural Networks 

Can enhance PV power 

forecasting and 

improve grid stability 

by accessing data 

quality and model 

complexity and 

conducting rigorous 

validations. 

-Can learn complex 

patterns  

from large datasets 

- High accuracy in 

many tasks (e.g., 

vision, NLP) 

- Automates feature 

extraction 

- Scales well with data 

- Performs well on 

unstructured data 

- Requires large 

amounts of labelled 

data 

- High computational 

cost (GPUs, TPUs) 

- Black-box nature 

(low interpretability) 

- Risk of overfitting 

- Requires expert 

tuning and 

architecture design 

- Natural Language 

Processing (NLP): 

Machine translation, 

chatbots, sentiment 

analysis 

- Healthcare: 

Disease detection, 

medical imaging 

diagnostics 

- Finance: Fraud 

detection, stock 

prediction 

- Autonomous 

Vehicles: Perception 

and decision-making 

- Gaming and 

Robotics: Strategy 

planning, motion 

control 

8. Nattha 

Thipwangmek , 

Nopparuj 

Suetrong 

et. Al, 2024 [16] 

Convolution Neural 

networks 

(CNN) 

-Robust model that 

excels in capturing 

complex patterns in 

solar PV generation 

data. 

-Excellent for image 

and spatial data 

processing 

- Raw data feature 

extraction 

automatically 

- Translation 

invariance in images 

- Works well with 

minimal pre-

processing 

- Requires large 

labelled datasets for 

training 

- Computationally 

intensive  

- Poor performance 

on non-spatial data 

- Susceptible to 

adversarial attacks 

- Limited 

understanding of 

internal workings 

By extending 

     the forecasting 

horizon, 

incorporating more 

granular weather 

data, assessing 

scalability and 

adaptability, and 

integrating emerging 

ML techniques can 

further advance the 

field of solar PV 

power generation 

forecasting. 

9. Meftah Elsaraiti 

and Adel Merab 

et al , 2022 [17] 

Recurrent 

Neural Networks 

(RNNs) 

More efficient 

operation of 

photovoltaic power 

plants in the future, 

promoting energy 

sustainability, 

decarburization, and 

the digitization of the 

electricity sector, 

Designed for 

sequential data (e.g., 

time series, text) 

 

- Struggles with 

long-term 

dependencies 

(vanishing gradient 

problem) 

- Training can be 

slow and unstable 

- Limited 

parallelization due to 

sequential processing 

- Often outperformed 

by LSTM and 

Transformer models 

- Time Series 

Forecasting: Stock 

prices, weather 

prediction 

- Music Generation: 

Creating sequences 

of musical notes 

- Anomaly 

Detection: In 

sequential or sensor 

data (e.g., IoT) 

10. R. Asghar, 

F. R. Fulginei, 

et al, 2024 [15] 

LSTM 

(Long Short-Term 

Memory) 

- Offers greater 

forecasting accuracy 

weather in standalone 

or hybrid 

- Captures long-range 

dependencies in 

sequences 

- Maintains memory 

over longer time steps 

- Effective on noisy 

and irregular 

- Computationally 

more expensive than 

simple RNNs 

- Complex 

architecture (gates 

increase parameters) 

- Slower training and 

inference 

- Still less efficient 

than newer models 

 

- Time Series 

Forecasting: Stock 

trends, electricity 

demand, weather 

prediction 

- Healthcare: Patient 

monitoring and 

diagnosis predictions 

- Music & Video 

Analysis: Sequence 
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sequential data 

- Suitable for variable-

length inputs 

like Transformers in 

some tasks 

modeling for rhythm, 

scene transitions 

11. Li, W. and 

Law, K.E., 2024 

[18] 

Hybrid Deep Learning  

Models 

Ex: CNN+RNN,  

CNN+LSTM,  

Transformer+CNN, etc. 

- Leverage strengths of 

multiple models (e.g., 

CNN for spatial + 

RNN for temporal 

data) 

- Improved 

performance and 

accuracy on complex 

tasks 

- More flexible and 

adaptable to diverse 

data types 

- Can handle 

multimodal data (text, 

image, video, etc.) 

- Better generalization 

in many real-world 

applications 

- Increased 

architectural 

complexity 

- Higher 

computational cost 

(more resources 

needed) 

- Difficult to train 

and tune effectively 

- Longer 

development and 

experimentation 

cycles 

- Requires large, 

diverse datasets to 

fully utilize potential 

 

- Autonomous 

Systems: Combining 

vision (CNN) and 

decision-making 

(RNN or 

Transformer) 

- Finance: Market 

prediction using 

time-series + 

sentiment analysis 

 

12. Kate Doubleday, 

Stephen 

Jascourt, 

et al. 2021 [19] 

Bayesian and 

Probabilistic Models 

(Navie Bayes, 

Bayesian Networks, 

Hidden Markov 

Models (HMMs), 

Gaussian Mixture 

Models (GMMs), 

Probabilistic 

Graphical Models) 

- Uncertainty 

Quantification: 

Provides probability 

estimates, not just 

binary decisions.  

- Incorporates Prior 

Knowledge: Can use 

domain expertise 

through priors.  

- Robust to 

Overfitting: 

Especially in low-data 

regimes.  

- Interpretable: 

Bayesian reasoning is 

transparent and often 

explainable.  

- Flexible: Can model 

complex, non-linear 

relationships 

probabilistically. 

- Computationally 

Intensive: Bayesian 

inference (e.g., 

MCMC)  

can be slow for large 

datasets.  

- Requires Prior 

Knowledge: Poor or 

subjective priors can 

bias results.  

- Complex 

Implementation:  

Designing and tuning 

probabilistic models 

can 

 be challenging.  

- Not Always 

Scalable: Inference 

in large Bayesian 

networks can be 

intractable. 

- Spam 

Detection 

(Naïve Bayes)  

 

- Sensor Fusion and 

Robotics  

- Risk Assessment 

and Forecasting  

- Anomaly 

Detection  

- Recommendation 

Systems (e.g., 

Bayesian 

Personalized 

Ranking) 

13. N. Omri, 

J. Jamii, 

et al., 2023 [20] 

Gaussian Process 

Regression (GPR) 

- Uncertainty 

Estimation: Provides 

confidence intervals 

with predictions.  

- Non-parametric 

Flexibility: No fixed 

model structure 

needed; adapts to data.  

- Strong Theoretical 

Foundation: Based on 

Bayesian inference.  

- Effective for Small 

Datasets: Performs 

well with limited data.  

- Kernel-Based: 

Custom kernels allow 

- Scalability Issues: 

Computational cost is 

O(n³) for training 

and O(n²) for 

prediction (n = 

number of samples).  

- Memory Intensive: 

Stores entire dataset 

for prediction.  

- Requires Careful 

Kernel Selection: 

Model performance 

heavily depends on 

the choice of kernel.  

- Poor Performance 

in High Dimensions: 

Can degrade with 

- Spatial Data 

Modeling (e.g., 

geostatistics/Kriging)  

- Surrogate 

Modeling in 

engineering and 

simulations  

- Hyperparameter 

Optimization (e.g., 

Bayesian 

Optimization)  

- Time-Series 

Forecasting (short 

sequences)  

https://research-hub.nrel.gov/en/persons/kate-doubleday
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domain-specific 

modelling. 

increasing input 

dimensionality. 

 

 

14. Hussain, S., 

and AlAlili, A. 

2016, [21] 

Bayesian Neural 

Networks (BNN) 

- Uncertainty 

Quantification: 

Outputs include 

confidence intervals or 

predictive 

distributions.  

- Better 

Generalization: 

Estimates the noise 

components in the data 

and achieves superior 

performance 

- Improved 

Robustness: Handles 

noisy or sparse data 

better than traditional 

NNs.  

 

- High 

Computational 

Cost: Inference (e.g., 

via variational 

methods or MCMC) 

is slow and resource-

intensive.  

- Complex 

Implementation: 

Requires advanced 

techniques for 

approximation and 

training.  

- Scalability Issues: 

Not easily scalable to 

very deep networks 

or massive datasets.  

- Difficult 

Hyperparameter 

Tuning: More 

parameters and 

distributions to 

manage. 

-Forecasting  

- Weather and 

Climate Modeling  

- Active Learning  

- Bayesian 

Optimization  

- Physics-Informed 

Machine Learning 

15. AlKandari, M. 

and Ahmad, I., 

2024 [22] 

Ensemble and 

Hybrid Models 

- Improved Accuracy: 

Typically outperform 

individual models by 

reducing variance 

(bagging), bias 

(boosting), or both.  

- Robustness: More 

resistant to overfitting 

and noise.  

- Flexibility: Can 

combine models 

tailored to different 

aspects of the problem.  

- Handles Complex 

Patterns: Hybrid 

approaches can capture 

both linear and non-

linear relationships 

effectively. 

- Increased 

Complexity: Harder 

to implement, 

interpret, and debug.  

- High 

Computational 

Cost: Training and 

prediction may 

require more time 

and resources.  

- Difficult to Tune: 

Requires careful 

selection of base 

models and 

parameters.  

- Reduced 

Transparency: Less 

interpretable than 

single-model 

approaches. 

- Classification & 

Regression Tasks 

(e.g., Random 

Forest, 

XGBoost)  

 

- Forecasting 

Problems (e.g., 

weather, energy, 

finance)  

- Image and Text 

Analysis (e.g., 

combining CNNs 

and RNNs or 

LSTMs)  

 

16. M. J. Zideh, P. 

Chatterjee, et al., 

2024 [23] 

Emerging ML Models 

[Transformers, 

Graph Neural Networks 

(GNNs), 

Physics-Informed ML 

(PIML)] 

 

Transformers 

- Excellent at capturing 

long-range 

dependencies.  

- Highly parallelizable, 

enabling efficient 

training.  

- Versatile: can be 

adapted for vision, 

text, audio.  

- State-of-the-art 

performance in NLP 

and CV. 

- Requires massive 

datasets and 

compute.  

- Prone to overfitting 

in small-data 

regimes.  

- Difficult to interpret 

internal workings. 

Natural 

Language 

Processing (NLP)  

- Computer Vision 

(CV)  

- Time-Series 

Analysis  

- Multi-modal 

Learning 
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GNNs 

- Naturally models 

graph-structured data.  

- Learns relational 

dependencies between 

nodes/edges.  

- Efficient 

representation of non-

Euclidean domains.  

- Scales well with 

sparse graphs. 

- Struggles with very 

large or dense 

graphs.  

- Requires careful 

graph construction.  

- Limited 

interpretability. 

- Social Network 

Analysis  

- Drug & Molecule 

Discovery  

- Recommendation 

Systems  

- Knowledge Graph 

Reasoning 

Physics-Informed ML 

(PIML) 

- Integrates physical 

laws into learning via 

constraints (e.g., 

PDEs).  

- Ensures physically 

consistent predictions.  

- Data-efficient in 

scientific domains.  

- Bridges gap between 

ML and traditional 

simulations. 

 

- Requires expert 

knowledge to 

formulate constraints.  

- Solving PDEs 

within ML models 

can be 

computationally 

intensive.  

- Still maturing. 

- Scientific 

Simulations  

- Engineering & 

Mechanics  

- Climate and 

Environmental 

Modelling  

- Renewable Energy 

Forecasting 

3. DATA PREPROCESSING 

TECHNIQUES FOR SOLAR POWER 

FORECASTING 
A critical first step in creating reliable and accurate solar power 

forecasting models is data preprocessing. Noise, missing values, 

inconsistencies, and redundant information are frequently present 

in primary data obtained from various sensing technologies, 

Photovoltaic (PV) systems, and weather sensors. These problems 

have the potential to severely impair machine learning (ML) 

algorithm performance in the absence of proper preprocessing. 

Preprocessing increases computational efficiency, feature 

relevance, and model generalizability in addition to improving 

data quality. The different data preprocessing techniques 

categories used for forecasting the solar power are reviewed in this 

section and presented in tabular column as follows. 

3.1 Data Cleaning 
Data cleaning fixes errors and discrepancies in the dataset. Typical 

difficulties consist of techniques like mean/median imputation, 

interpolation, or more sophisticated approaches like K-nearest 

neighbours (KNN) imputation handle missing data. Statistical 

techniques (e.g., Z-score, IQR) or machine learning-based 

anomaly detection (e.g., Isolation Forest) are used to identify 

outliers caused by anomalous weather occurrences or system 

malfunctions. Moving averages and other to minimize 

measurement noise and short-term fluctuations smoothing 

techniques are used. 

3.2 Data Transformation 
By converting raw features into appropriate formats Convergence 

and accuracy of model is enhanced. For distance-based and 

gradient-based ML algorithms, normalization and standardization 

are crucial because they bring features to a common scale. To deal 

with skewed distributions, especially in irradiance or power data, 

logarithmic or power transformations are utilized Using one-hot 

or label encoding, categorical encoding transforms weather or 

temporal indicators into numerical values. 

3.3 Feature Engineering 
It is greatly improved by creating pertinent features: 

• Seasonal and diurnal patterns are captured by 

extracting temporal features. 

• Temporal dependencies in PV generation are 

represented by lag features, such as past power 

output at t−1, t−24. 

• Time features are subjected to cyclic encoding, which 

preserves their periodic character by applying sine and 

cosine transformations. 

3.4 Reducing Dimensionality and Choosing 

Features 
Reducing superfluous or unnecessary features lowers model 

complexity and helps avoid overfitting: Commonly employed 

techniques include  

• Statistical methods (e.g., mutual information, correlation 

analysis) and machine learning. 

• Autoencoders and Principle Component Analysis (PCA) 

are used to reduce dimensionality while keeping 

important information. 

3.5 Techniques for Signal Decomposition 
Decomposition techniques are used to more accurately model the 

intricate, nonlinear, and non-stationary nature of solar power time 

series: For better forecasting, the original signal is divided into 
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several components using Wavelet Transform (WT), Empirical 

Mode Decomposition (EMD), and Variational Mode 

Decomposition (VMD). 

3.6 Processing of Weather and Irradiance 

Data 
Preprocessing weather data is essential since weather has a big 

impact on PV output Consistency with historical observations is 

ensured by bias correction and temporal alignment of weather 

forecast data (such as NWP outputs). 

By taking into consideration the movement and coverage of clouds 

in real time, sky image analysis and cloud detection algorithms 

improve estimates of solar irradiance. Irradiance measurements 

are frequently normalized using clear-sky models. 

3.7 Aggregation and Resampling 
To match data resolution across sources, temporal resampling is 

utilized (e.g., converting minute-level data to hourly). In order to 

smooth out local variability and more accurately represent grid-

level effects, spatial aggregation averages the outputs from several 

PV plants.      

3.8 Data Balancing and Reduction of Noise 
Data Balancing works well with high-frequency data and noise 

reduction is particularly helpful: Some of the methods are 

Savitzky-Golay filters, denoising autoencoders, and low-pass 

filters. Resampling or synthetic data generation (like SMOTE) can 

be used to rectify imbalanced datasets (like those that skew toward 

midday peaks). By converting unprocessed, noisy, and incomplete 

data into high-quality inputs appropriate for ML models, Data 

preprocessing serves as a fundamental component of PV power 

forecasting. The forecasting horizon, data availability, and model 

type can be taken into care while selecting the right preprocessing 

methods. The accuracy and dependability of solar forecasts will 

be greatly enhanced by sophisticated preprocessing techniques, 

particularly those involving signal decomposition, feature 

engineering, and uncertainty handling, as the volume and 

complexity of solar data continue to increase. 

4. GENERALIZED FLOW CHART OF 

SOLAR POWER FORECASTING 

 

Fig.1. Generalized Flow chart for solar power forecasting 

plants 
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Table 2. Summary of different Data Preprocessing Techniques. 

Technique Advantages Disadvantages Applications 

Normalization / Scaling (Min-

Max, Z-score, etc.) 
- Brings features to the same scale 

- Improves performance of distance-

based models (e.g., KNN, SVM) 

- Sensitive to outliers  

- Choice of method impacts 

model behavior 

- Image processing 

- ML models (SVM, KNN, Neural 

Networks) 

Encoding Categorical Data (Label, 

One-hot, Target Encoding) 

- Converts non-numeric data into 

usable form  

- Preserves class information 

- One-hot encoding increases 

dimensionality  

- Label encoding may introduce 

ordinal bias 

- NLP  

- Customer segmentation 

- Recommendation systems 

Missing Value Imputation (Mean, 

Median, KNN, MICE) 
- Handles incomplete data 

- Maintains dataset size 

- May introduce bias or noise  

- Complex methods are 

computationally expensive 

- Medical data 

- Surveys  

- Environmental datasets 

Outlier Detection & Removal - Improves model robustness 

- Reduces skewed performance due 

to anomalies 

- Risk of removing important 

rare cases 

- Requires domain knowledge 

- Fraud detection 

- Sensor data cleaning 

Feature Selection (Filter, Wrapper, 

Embedded) 

- Reduces dimensionality 

- Improves training speed and avoids 

overfitting 

- May discard useful features 

- Computationally intensive 

methods 

- Genomics 

- Text classification 

- Financial forecasting 

Feature Extraction (PCA, t-SNE, 

Autoencoders) 

- Captures essential patterns  

- Enables visualization and noise 

reduction 

- May reduce interpretability - 

PCA assumes linearity 

- Image compression 

- Data visualization 

- Dimensionality reduction 

Data Augmentation - Increases dataset size 

- Reduces overfitting 

- Risk of introducing unrealistic 

data 

- Domain-specific techniques 

required 

- Image classification 

- NLP 

- Time-series modeling 

Binning / Discretization - Simplifies models 

- Useful for rule-based systems 

- Loss of information 

- Can introduce artificial 

thresholds 

- Decision trees 

- Rule-based systems 

- Demographic segmentation 

Text Preprocessing (Tokenization, 

Stemming, Lemmatization) 

- Converts unstructured text to 

structured form  

- Reduces dimensionality in NLP 

tasks 

- May lose contextual meaning 

- Requires language-specific 

processing 

- Sentiment analysis 

- Chatbots 

- Search engines 

 

5. SUITE METRICS 
Using a design-of-experiments methodology in combination 

from literature survey with response surface, sensitivity 

analysis, and nonparametric statistical testing methods, a 

detailed analysed framework suggested metrics are of three 

different kinds mainly to improve the PV forecasting technique.  

Forecasting improvements can be divided into three categories 

as follows (i) uniform improvements when there is no ramp. (ii) 

improvements in the magnitude of ramp forecasting, and (iii) 

changes in the threshold for ramp forecasting. Forecasts for 

simulated and real solar power plants can be examined for both 

one hour and one day in advance. According to the results of 

the sensitivity analysis, (i) all of the suggested metrics could be 

used to demonstrate how the solar forecasts accuracy changes 

with uniform forecasting improvements, and (ii) the metrics of 

skewness, kurtosis, and Rényi entropy could be used to 

demonstrate how solar forecasts accuracy changes with ramp 

forecasting improvements and a ramp forecasting threshold. A 

brief description of metrics are described as follows. 

5.1 Statistical Metrics 
Distributions of forecast errors at various time frames and 

locations were studied to understand the differences in solar 

forecasts. The distribution of forecast errors shows the raw 

forecasting error data in a graphical form; this gives a clear 

picture of how well the forecasts perform over longer periods. 

Also, interval forecasts of solar power can help identify the 

reserve needs to cover forecast errors. This plays vital role in 

managing and scheduling generating units. Researchers have 

looked at several distribution types to measure the distribution 

of solar (or wind) power forecast errors. These include the 

hyperbolic distribution, kernel density estimation (KDE), 

normal distribution, and Weibull and beta distributions.  

5.2 Kernel Density Estimation (KDE) 
KDE is a method that estimates the probability density function 

of a random variable without assuming any particular 

parameters. The solar energy community has widely used KDE 

to characterize wind speed distribution [24,25] and for 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 8 – No. 1, August 2025 – www.caeaccess.org 
 

16 

predicting wind and solar power [26, 27]. KDE is defined as 

[28]. 

𝑓(𝑥; ℎ) =
1

𝑛
∑ 𝐾ℎ(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

=
1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

 

Where K has a kernel function K and a bandwidth h a 

smoothing factor.  

5.3 Pearson Correlation Coefficient 
Pearson’s correlation coefficient measures the two variables or 

data sets. Pearson’s correlation coefficient, ρ is represented by 

the given formula mathematically as, 

𝜌 =
𝑐𝑜𝑣(𝑝, 𝑝̂)

𝜎𝑝𝜎𝛽

 

In this context, p and pˆ is the present value and predicted solar 

power output, respectively. Pearson’s correlation coefficient 

serves as a global measure of error. A higher value of this 

coefficient suggests that the solar forecasting is more accurate. 

It reflects how closely the overall trends of the forecasts align 

with the actual values. Because of geographic smoothing, this 

metric tends to be more useful for assessing forecast accuracy 

at individual plants or in smaller clusters of plants, rather than 

across larger balancing authority areas or interconnections. 

This smoothing effect can lessen the distinction between a good 

forecast and a poor one. 

5.4 RMSE, NRMSE, RMQE and NRMQE  
The RMSE metric is a global error measurement, throughout 

the entire forecasting period defined by,    

RMSE = √
1

N
∑(p̂i − pi)

2

N

i=1

 

Forecasts errors are effectively compared across different 

temporal and spatial scales and this can be normalized using the 

solar power plant capacity by RMSE. The RMSE, or NRMSE, 

is particularly sensitive to larger forecast. The RMQE is given 

by, 

RMQE=[
1

N
 ∑ (P̂ − PI )

4 N
i=1 ]

1
4⁄

 

5.5 MaxAE, MAE, MAPE and MBE 
The MaxAE is evaluated to check how well we can predict the 

events occurring in power system during short-term. Lower the 

value of MaxAE, more accurate will be the forecast. This 

metric is particularly good at identifying the biggest forecast 

error during a specific period in power system. However, it 

tends to place too much emphasis on extreme events, making it 

more beneficial. The MaxAE is given by, 

MaxAE = 𝑚𝑎𝑥𝑖=1,2,….,𝑁| 𝑝̂𝑖-𝑝𝑖 | 

The evaluation metric used in regression problems of 

renewable energy forecasting can be done by using Mean 

Absolute Error (MAE) which can be defined by,  

MAE = 
1

𝑁
 ∑ |𝑝̂𝑖 − 𝑝𝑖

𝑁
𝑖=1 | 

Thus, this metric serves as a measurement of global error, but 

it tends to be less harsh on extreme forecast events compared 

to the RMSE metric. When you see smaller MAE values, it 

generally means the forecasts are more accurate and these are 

expressed as, 

MAPE = 
1

𝑁
∑ |

𝑝𝑖− 𝑝𝑖

𝑝0
|𝑁

𝑖=1  

MBE =  
1

𝑁
∑ (𝑝𝑖̂ −  𝑝𝑖)𝑁

𝑖=1  

P0 represents the capacity of the solar power plants. For 

comparison of forecast errors MAPE is usually used. Also, this 

metric also helps us understand the average bias in our 

forecasts. A larger MBE means there's more bias in the 

forecast.  

MBE, also helps to enhance forecasts, but it doesn't really 

capture the full spectrum of forecast errors. For instance, the 

same MBE value might correspond to various error 

distributions, some of which could be more favorable than 

others. 

5.6 Kolmogorov-Smirnov Test Integral and 

OVER 
When comparing forecasts over longer time periods and 

attempting to determine how closely the distributions of those 

forecasts match the present value of the relevant period, the KSI 

metric is especially helpful. The major difference among two 

cumulative distribution functions (or CDFs) is called as the K 

statistics D [29]. 

D = max|F(𝑝𝑖) – 𝐹̂(𝑝𝑖)| 

The cumulative distribution function of the present value and 

predicted generated data sets are denoted by the letters F and Fˆ 

in this context, respectively. The null hypothesis is defined as: 

In the event that the D statics, which calculates how the 

distribution is going to be differed from the actual reference 

distribution. If this difference is less than the threshold value 

Vc, it suggests that the two data sets are having exactly similar 

distribution and are identical statistically. The critical value Vc 

is calculated by the number of points mentioned in the time 

series of forecast, which is computed at a 99% confidence level 

[29]. 

𝑉𝑂= 
1.63

√𝑁
,   N > 35 

For each interval, the difference in the actual CDFs and power 

forecast for each and every interval is defined by [29], 

𝐷𝑗 = max |F(𝑝𝑖) – 𝐹(̂𝑝𝑖)|,   j = 1,2…,m 

             where  pi ∈[pmin + (j − 1)d, pmin + jd] 

The interval distance d, is given by, [28] 

d   = 
𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛

𝑚
 

Where, Pmax and Pmin are respectively maximum and minimum 

values of solar power generated. The KSI is the integrated 

difference between the two CDFs and is given by [29],  

KSI = ∫ 𝐷𝑛
𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛
dp 
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KSIPer is evaluated by the given formula below which is used 

for the comparison of different spatial and temporal scles of 

forecasts errors,   

KSIPer(%) = 
KSI

a0
× 100 

The OVER metric is the difference between the CDFs of 

present actual and predicted solar Power. Unlike the KSI 

metric, which looks at all errors, the OVER metric focuses 

specifically on those significant forecast errors that go beyond 

a certain threshold, since these larger errors are crucial for 

power system management [30]. OVER is defined by,  

OVER = ∫ tdp
Pmax

Pmin
 

OVERPer(%) = 
OVER

a0
× 100 

Where t is given by,  

t = {
Dj − Vc      if       Dj > Vc

0      if      Dj ≤ Vc
 

5.7 Kurtosis and Skewness  
The MAE and RMSE metrics are insufficient, when we want 

to distinguish among two distributions which are having the 

identical mean and variance but different skewness and 

kurtosis. The third is skewness, which quantifies the symmetry 

of a probability distribution. A Positive skewness in these 

errors suggests an over forecasting tails, whereas a negative 

skewness suggests an under-forecasting tail.  

5.8 Uncertainty quantification and 

Propagation Metrics  
The two key metrics to help measure the solar power 

uncertainty are: (i) The Standard Deviation of errors in solar 

power forecast. (ii) The Renyi entropy of those forecast errors. 

Traditional forecasting metrics like RMSE and MAE only work 

well when the error distribution follows a Gaussian pattern. The 

Renyi entropy is defined by [29],  

𝐻∝(𝑋) =
1

1−∝
log2 ∑ 𝑝𝑖 

∝

𝑛

𝑖=1

 

In this context, α (where α > 0 and α ≠ 1) represents the 

order of the Rényi entropy, which helps us create a range 

of Rényi entropies. The term Pi is the probability density 

of the ith discrete section. Generally speaking, a higher 
Rényi entropy value suggests greater uncertainty in forecasting. 

5.9 Swinging Door Algorithm 
Different time frames and geographic locations can really 

impact how severe the ups and downs in solar power output are. 

By forecasting solar power, we can help minimize the 

uncertainty that comes with power supply. This is utilized to 

pinpoint the ramps across the various time intervals [30]. This 

works by extracting ramp periods from a series of power 

signals, identifying where each ramp begins and ends. The user 

sets a threshold that affects how sensitive the algorithm is to 

variations in ramps. The only adjustable parameter in the 

algorithm is the threshold, represents the width of a “Door”. 

The ε parameter directly influences how sensitive the threshold 

is to noise and minor fluctuations. If ε is smaller, the algorithm 

will catch many small ramps; if it’s larger, it will only pick up 

a few significant ramps [30].  

5.10 Economic Metrics 
Evaluating the economic value of enhancements in solar power 

forecasting is aided by an objective value of the measure, the 

reduction in the cost of extra operating reserves associated with 

the management of solar variability. In the power sector, for the 

assessment of load (or other) variability forecasts as to how 

many operating reserves users should procure uses the 95th 

percentile of the forecast errors [30].  

The different metrics and their respective description is given 

in Table 3 below

Table.3: Different Evaluation metrics
 

Abbreviation Description Relevance in Solar Forecasting 

Mean Absolute Error MAE Average of absolute differences between 

predicted and actual values. 

Easy to interpret; useful for measuring overall 

error magnitude. 

Mean Square Error MSE Average of squared differences between 

predicted and actual values. 

Penalizes large errors more heavily; good for 

the analysis of sensitivity. 

Root Mean Squared Error RMSE Square root of MSE; expresses error in the same 

unit as the output variable. 

Popular for comparing models; highlights large 

forecasting errors. 

Mean Absolute Percentage 

Error 

MAPE Mean of absolute percentage errors between 

forecasted and actual values. 

Useful for percentage-based error; not ideal 

when actual values are near zero. 

Normalized RMSE nRMSE RMSE divided by the mean or range of actual 

values. 

Useful for comparing models across different 

datasets. 

R-squared (Coefficient of 

Determination) 

R² Measures the proportion of variance in actual 

data explained by the model. 

Indicates goodness of fit; ranges from 0 (no fit) 

to 1 (perfect fit). 

Symmetric MAPE sMAPE Modified version of MAPE using symmetric 

percentage error. 
Avoids issues with division by zero in MAPE. 

Mean Bias Error MBE Mean of differences between forecasted and 

actual values. 

Shows model bias (positive or negative). 

Relative Absolute Error RAE Ratio of absolute error to the error of a naïve 

model. 

Indicates how much better the model is 

compared to a simple average-based model. 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 8 – No. 1, August 2025 – www.caeaccess.org 
 

18 

F-Score Skill Score Compares forecast performance to a reference 

or baseline forecast (e.g., persistence). 

Useful for benchmarking against traditional 

forecasting methods. 

6. CONCLUSION AND FUTURE SCOPE 
This work introduces the solar energy forecasting by using 

different machine learning models. As the ML models have 

found promising for forecasting solar energy from the literature 

survey done. This study identifies different ML models from 

traditional methods to emerging models for forecasting solar 

power generation, their benefits, drawbacks and applications 

which are presented in Table 1. Also, the different algorithms 

being used and the data preprocessing techniques along with 

their benefits, limitations and use cases are also summarized in 

Table 2. Furthermore, a detailed description of suite metrics 

required for the assessing quality of solar power forecast is 

been discussed in Table 3. Based on these it can be easier for 

the researchers to look into further future works to improve the 

reliability, accuracy and also efficiency of the system 

configuration.   However, future work can be done by 

combining with suitable and task-specific preprocessing 

pipelines, their efficacy is greatly increased. Achieving high 

forecasting precision still depends on the cooperation of model 

selection and preprocessing design. 
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