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ABSTRACT

The exponential growth of IoT demands scalable and adaptive
security frameworks to counter emerging cyber threats. This
paper presents a MATLAB-based evaluation of a lightweight
intrusion detection framework for IoT networks. Performance
analysis under varying traffic loads (25—-1000 messages) shows
a consistent 90% attack detection rate, reduced detection time
(from 2.14s to 1.44s), and improved legitimate message rate
(73%-80.7%). These results confirm the framework’s
scalability, resilience, and efficiency, demonstrating its
capability to ensure secure and reliable IoT communications
while minimizing false positives and maintaining strong
intrusion detection accuracy.
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1. INTRODUCTION

The rapid proliferation of the Internet of Things (IoT) has
introduced unprecedented opportunities across smart healthcare,
intelligent transportation, and industrial automation. However,
IoT environments are highly vulnerable to cyberattacks due to
their distributed nature, heterogeneous devices, and limited
computational resources.[1] Among the most pressing
challenges is the development of efficient intrusion detection
mechanisms that can operate with low latency, preserve
legitimate communication, and adapt to varying network
loads.[2] Traditional intrusion detection systems (IDS) are not
directly suitable for IoT because of their complexity and high
resource consumption. Therefore, lightweight and scalable
approaches are required to ensure security without
compromising performance. Also, The Internet of Things (IoT)
has rapidly evolved into one of the most influential paradigms
of modern communication systems, connecting billions of
heterogeneous devices across diverse domains.[3][4] This
unprecedented level of interconnectivity creates vast
opportunities for innovation but also introduces substantial
challenges in terms of security, scalability, and reliability.
Given the distributed nature of IoT devices, their limited
computational resources, and reliance on open wireless
channels, 10T networks are highly vulnerable to cyberattacks,
including denial-of-service (DoS), spoofing, and false data
injection. Ensuring secure and efficient operation under such
constraints has therefore become a critical research priority.[5]

Intrusion Detection Systems (IDS) have been widely recognized
as an essential line of defense for IoT environments, enabling
the detection and mitigation of malicious activities in real time.
However, conventional IDS approaches face significant

limitations when directly applied to IoT networks. Signature-
based techniques are efficient against known attacks but
ineffective against novel threats, while anomaly-based methods
can capture unknown patterns but often suffer from false
positives and increased computational costs.[6] Furthermore,
maintaining detection accuracy under varying user densities and
traffic loads remains a fundamental challenge, as scalability
directly impacts both detection time and system efficiency.

Simulation-based studies offer a promising pathway to address
these issues by providing a controlled environment for analyzing
system performance across diverse scenarios. MATLAB, with
its flexible modeling and computation capabilities, has proven
to be an effective platform for simulating IoT networks, enabling
detailed evaluation of key performance indicators such as attack
detection rate, detection time, and legitimate message
preservation.[7]

In this study, we propose a MATLAB-based simulation
framework for evaluating intrusion detection in IoT networks
under varying user loads ranging from 100 to 1000 users. The
simulation results reveal several important insights. First, the
system consistently achieves a 90% attack detection rate
across all scenarios, demonstrating robustness in detecting
malicious activity. Second, the detection time varies with
network load, showing that higher traffic densities (e.g., 500
users with an average detection time of 2.15 s) impose greater
computational overhead, while larger-scale networks (e.g., 1000
users with 1.44 s) benefit from improved stability and faster
adaptation. Finally, the legitimate message rate improves with
increased users, reaching 80.7% at 1000 users, suggesting
enhanced resilience of the detection framework in
differentiating malicious and benign traffic.

These findings underscore the importance of designing
lightweight, scalable, and adaptive IDS solutions capable of
maintaining high detection accuracy while minimizing impact
on legitimate communication. By linking detection performance
directly with network scale, this work provides both theoretical
and practical insights into the development of efficient intrusion
detection strategies for [oT environments. Ultimately, the results
contribute to advancing the state of the art in secure, scalable
IoT networks that can withstand the dynamic challenges of
mobility and massive connectivity.

This paper presents a MATLAB-based simulation framework to
evaluate the effectiveness of intrusion detection in IoT networks
under varying traffic conditions. The framework focuses on
measuring detection time, attack detection rate, and legitimate
message rate, providing insights into system scalability and
resilience
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2. MOTIVATION

With the rapid expansion of the Internet of Things (IoT), billions
of interconnected devices continuously generate massive
volumes of data across diverse applications, ranging from
healthcare monitoring to industrial automation and smart cities.
While this connectivity enables unprecedented opportunities, it
also exposes IoT environments to a broad spectrum of
cyberattacks, including denial-of-service (DoS), spoofing, and
false data injection. These threats jeopardize not only data
confidentiality but also network stability and service
availability.

Traditional Intrusion Detection Systems (IDS), though effective
in conventional computer networks, are often unsuitable for [oT
environments due to several limitations:

2.1 Scalability constraints

As the number of IoT devices increases, maintaining detection
accuracy without excessive overhead becomes a pressing
challenge.

2.2 Resource limitations

IoT devices are typically constrained in terms of processing
power, memory, and energy, making heavyweight IDS models
impractical.

2.3 Latency and real-time requirements
Attack detection must occur with minimal delay to prevent
system disruption, yet many existing IDS approaches suffer
from long response times.

2.4 Preservation of legitimate traffic
Misclassification of legitimate messages as malicious (false
positives) undermines the reliability and user trust in IoT
systems.

These limitations highlight the urgent need for lightweight,
adaptive, and scalable intrusion detection approaches
specifically tailored for IoT environments.

The motivation behind this research is to fill this critical gap by
developing and evaluating a MATLAB-based simulation
framework capable of analyzing intrusion detection
performance under various network scales. By examining key
metrics such as detection time, attack detection rate, and
legitimate message preservation, this study provides practical
insights into designing efficient and scalable IDS solutions that
can adapt to the dynamic and resource-constrained nature of [oT
networks.

3. RELATED WORK

Intrusion detection in [oT networks has attracted significant
attention from researchers, leading to the development of
diverse approaches ranging from traditional signature-based
detection to advanced machine learning techniques.

Early work such as Roesch [1] introduced signature-based
detection systems like Snort, which are efficient for identifying
known attacks but fail to detect zero-day threats and require
constant updates. To overcome these limitations, researchers
turned toward anomaly-based detection. Ahmed et al. [2]
provided a comprehensive survey of anomaly detection
techniques, highlighting their potential in identifying unknown
attacks but also noting their high false positive rates. Similarly,
Buton et al. [3] examined IoT security vulnerabilities and
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emphasized the critical need for lightweight, anomaly-driven
detection systems tailored for constrained devices.

More recent studies have focused on hybrid intrusion
detection models that combine signature and anomaly
detection. [4] explored container-based cloud computing and
IoT security, proposing hybrid solutions to improve resilience
against a wide range of attacks. While hybrid approaches
improve accuracy, they often impose computational and
storage overhead, making them less practical for large-scale
IoT deployments.

The integration of machine learning (ML) and deep learning
(DL) has opened new possibilities for IoT intrusion detection.
Ferrag et al. [5] presented a systematic review of ML-based
anomaly detection, emphasizing the promise of lightweight
algorithms for real-time intrusion detection in IoT. [6] further
advanced this field by applying deep recurrent neural networks
(RNNs) to IoT malware detection, demonstrating improved
performance in detecting evolving threats. Despite these
advancements, ML/DL methods often face challenges in terms
of scalability, dataset dependency, and the need for extensive
computational resources.[7]

Compared with these approaches, our work differs in two
significant aspects: (1) it employs a simulation-driven
methodology using MATLAB to systematically evaluate IDS
performance under varying user loads, and (2) it emphasizes
scalability and real-time responsiveness by [8] analyzing
detection time, attack detection rate, and legitimate message
preservation. This simulation-based perspective provides
complementary insights to ML/DL-driven approaches, offering
a benchmark for understanding IDS behavior under controlled
yet scalable [oT scenarios.[9][10]

4. CONTRIBUTIONS

The key contributions of this paper can be summarized as
follows:

MATLAB-based Simulation Framework — We develop a
lightweight and scalable simulation framework tailored for IoT
intrusion detection. Unlike existing approaches that rely solely
on datasets or heavy machine learning models, our framework
provides a controlled and reproducible environment for
analyzing IoT security.

Comprehensive Performance Evaluation — The framework
systematically evaluates intrusion detection performance across
different user loads (25, 50, 100, 250, 500, and 1000users).
Metrics include detection time, attack detection rate, and
legitimate message preservation, providing a holistic view of
system behavior under varying traffic conditions.

Scalability Analysis — The study demonstrates how the
proposed framework maintains a consistent 90% detection
rate while highlighting trade-offs in detection time and
legitimate traffic rates as network size increases. This offers
valuable insights into the adaptability of IDS solutions in large-
scale IoT deployments.

Benchmark for Future Research — By quantifying the
relationship between network size, detection accuracy, and
stability, this work establishes a baseline for comparing future
IDS strategies, particularly those aimed at balancing real-time
responsiveness and security robustness.

Practical Insights for IoT Security — The results emphasize the
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importance of designing lightweight and adaptive IDS
mechanisms that minimize false positives while ensuring timely
detection. These findings are highly relevant for real-world IoT
applications where resource constraints and mobility play a
critical role.

This study makes several significant contributions to the field
of secure and resilient IoT networking. First, it introduces a
comprehensive MATLAB-based simulation framework that
enables the systematic evaluation of IoT network stability under
mobility and varying user densities. Unlike traditional
approaches, the proposed framework integrates mobility models
with adversarial scenarios, allowing the simultaneous
assessment of detection accuracy, detection time, and legitimate
message delivery. Second, the research provides a detailed
scalability analysis by considering user populations of (25, 50,
100, 250, 500, and 1000 messages), thereby uncovering the
impact of network scale on detection efficiency and
communication reliability. Third, the findings reveal a novel
stability—security trade-off, showing that increasing the number
of users can improve legitimate message preservation in certain
conditions while also influencing detection time. This interplay
between detection performance and communication integrity
offers new insights into the design of resilient IoT
infrastructures. Finally, the study delivers practical design
guidelines for future large-scale IoT deployments in domains
such as healthcare, transportation, and industrial automation,
where maintaining both real-time security and reliable message
delivery is critical.

Define

Parameters
Generate Simulation
Messages Loop

|

Detect Attacks

l

Calculate
Rates

l

Store Results

Fig (1)

As illustrated in Fig. 1, our MATLAB simulation pipeline first
initializes experimental parameters and generates labeled traffic.
The core Simulation Loop processes events and applies the
detector to each incoming message; detection outcomes are then
used to compute ADR, LMR, and DT, which are saved for
statistical analysis.

S. DETAILED DESCRIPTION OF THE
FLOWCHART

This flowchart represents the end-to-end simulation pipeline
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used to obtain the results reported in this paper. The pipeline is
organized as a sequence of high-level operations that are
executed for each experimental stage (i.e., for each configured
number of messages or network load).

Start — Define Parameters

The process begins by defining all experimental parameters.
Typical parameters include the set of message-count stages (e.g.,
25,50, 100,250, 500, 1000), the attack probability or attack rate,
detection algorithm settings (e.g., detection threshold, classifier
hyperparameters), simulation duration, time resolution, and
random seeds for reproducibility. Results arrays are initialized
here (placeholders for detection time, attack detection rate,
legitimate message rate, and any additional network metrics
such as packet loss, jitter, throughput).

Generate Messages

At each stage the simulator generates a traffic trace according to
the specified traffic model. Each generated message is labeled
as legitimate or attack using the configured attack probability or
according to an explicit attack model (e.g., Poisson-based attack
bursts, periodic injection, or targeted spoofing). The generation
step may produce per-packet metadata (timestamps,
source/destination IDs, payload size) required by downstream
modules.

Simulation Loop (right box)

The “Simulation Loop” is the central time-driven loop that
advances simulation time and processes events. Inside this loop
the simulator performs: packet generation (as above), packet
scheduling and delivery, channel/queue modeling (if
applicable), attack injection events, and callouts to the detection
module for each incoming packet or batch. The loop iterates
until the configured simulation duration or until all generated
messages have been processed. Practically, the Simulation Loop
implements the event handling that produces the raw logs
(timestamped send/receive events, detection outcomes, and
internal state transitions) used by the analysis stage.

Detect Attacks

During or immediately after the simulation loop, the detection
module evaluates each message or aggregated feature vector.
Detection can be implemented as a simple threshold rule, a
signature check, an anomaly detector (e.g., statistical rule, one-
class classifier), or a hybrid of these methods. The module
records detection timestamps for true positives, false positives,
and false negatives. This block also measures the detection
latency for each detected attack (detection timestamp — attack
occurrence timestamp).

Calculate Rates

Using detection outcomes and event logs, the pipeline computes
the performance metrics defined in the manuscript (see
Equations). Typical metrics include:

e  Attack Detection Rate (ADR) = TP / (TP + FN) x
100%

e Legitimate Message Rate (LMR) = TL / (TL + FP)
% 100%

e Average Detection Time (DT) = average (detection
delay for all detected attacks)
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Additional network metrics such as Packet Loss Ratio (PLR),
End-to-End Delay, jitter, and throughput can be computed here
as well. All computed metrics are stored with the corresponding
stage identifier (number of messages).

Store Results

Computed metrics, plus raw logs or summarized logs, are saved
in structured output files (MAT files, CSV logs, or databases).
This block should also trigger the generation of figures/tables
and export of the summary table used in the Results section.
Metadata for reproducibility (parameter values, random seeds,
code version) is stored together with the results.

End

The pipeline returns to the caller or terminates after all stages
have been executed and results are saved.

The Simulation Workflow begins with defining the simulation
parameters, including the number of transmitted messages,
attack probability, and detection accuracy. The network
topology and node mobility are then initialized to emulate
realistic IoT communication conditions. Next, the system
configures both normal and attack traffic models to simulate
legitimate data exchange and intrusion attempts.

Once the configuration is complete, the main simulation loop is
executed. During this phase, messages are generated,
transmitted, and classified as either legitimate or malicious
based on the predefined probability distributions. Detection
mechanisms are applied to identify potential attacks, and
performance metrics such as Detection Time, Attack Detection
Rate (ADR), and Legitimate Message Rate (LMR) are
computed.

After the simulation run, raw logs containing timestamps,
events, and labels are collected and preprocessed to align all
recorded data. Subsequently, statistical analyses are conducted
to calculate mean values, standard deviations, and confidence
intervals for all key metrics. The processed results are then
visualized using plots and tables to provide comparative insights
across different simulation stages. Finally, all outputs are
summarized, exported, and prepared for inclusion in the research
report.

6. MATHEMATICAL FORMULATION

To quantitatively evaluate the effectiveness of the proposed
detection framework and to measure the overall stability of the
IoT network, several performance metrics were mathematically
formulated as follows:

6.1 Attack Detection Rate (ADR)

The ratio of successfully detected malicious packets to the total
number of malicious packets:[11]

ADR X 100

TP
T TP+FN

ADR X 100

“TPYFN
where TPdenotes true positives and FNdenotes false negatives.

6.2 False Alarm Rate (FAR)
The percentage of legitimate traffic incorrectly classified as
malicious:[11][12]

FAR X 100

_FP
T FP+TN
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6.3 Legitimate Message Rate (LMR)

The proportion of legitimate messages that were successfully
identified and transmitted without misclassification:[13][14]

LMR X 100

_ TL
" TL+FP
where TLdenotes true legitimate packets.

6.4 Average Detection Time (DT):[15][16]

The average time delay between the occurrence of an attack and
its detection:

n
1
DT = ;Z(tdetect,i - tattack,i)
i=1
where nis the number of detected attacks.

6.5 Packet Loss Ratio (PLR):[17][18]
The ratio of lost packets to the total transmitted packets:

PLR = Psent - Preceived % 100

Psent
where is the total transmitted packets and Pyoceipeqis the number

of successfully received packets.

6.6 End-to-End Delay (E2ED):[16][18]

The average latency experienced by packets in reaching the
destination:

N
1
E2ED = NZ (treceive,i - tsend,i)

i=1
where Nis the number of received packets.

6.7. Jitter (J):[19]]20]

The variation in packet delays between consecutive packets:

N
1
] =m; | (Di = Di—q) |

where D; = treceive,i — tsena,i-

6.8 Throughput (T):[19][20]
The rate of successfully delivered data over the communication
channel:
Preceivea X S
T = received

Ttotal
where Sis the packet size in bits and Ty¢4;is the total simulation
time.

where FPrepresents false positives and TNrepresents true
negatives.

7. METHODOLOGY

The Methodology adopted in this research involves developing
and analyzing a simulation framework in MATLAB to evaluate
intrusion detection performance in IoT environments. The
workflow consists of several sequential stages; each designed to
capture realistic network behavior and assess detection accuracy
under varying traffic conditions.

Initially, the simulation parameters are defined, including the
number of messages transmitted in each phase (25, 50, 100, 250,
500, and 1000 messages) and the attack probability (set to 20%).
This step establishes the baseline for all subsequent experiments.
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The simulation then generates a mix of legitimate and malicious
packets based on these parameters.

Each stage executes a detection algorithm that identifies attacks
according to a predefined detection accuracy (set at 90% for
baseline evaluation). The detection time is estimated as a
function of the message load to mimic computational delays
during real-time detection. The framework computes key
performance metrics such as Attack Detection Rate (ADR),
Legitimate Message Rate (LMR), and Detection Time (DT)
for every simulation phase.

The collected results are stored, processed, and visualized using
bar charts and comparative line plots to illustrate how
performance metrics evolve as the number of transmitted
messages increases. Statistical analysis, including mean and
percentage evaluation, is performed to quantify the effectiveness
and consistency of the detection system.

Finally, a summary table consolidates all measured values
across the six simulation stages, providing a clear overview of
how the detection framework maintains performance scalability
and stability across different traffic loads.

Multiple independent runs: perform Rindependent runs per
stage (e.g., R = 20or R = 30) with different random seeds to
estimate mean + 95% confidence intervals for each metric.
Report means and CI in tables/figures.

Seed control and logging: store the PRNG seed for each run
and the exact parameter set used (config file) to guarantee
reproducibility.

Event logging: write raw event logs (timestamps, labels,
detection events) to disk. These logs are essential for post-hoc
debugging and verification.

Profiling: instrument critical sections (detection function, 1/O,
preprocessing) to measure CPU time and memory usage. If
detection time peaks, profiling helps locate bottlenecks.

Batch vs online detection: clarify whether detection runs per-
message (online) or over batches (windowed). This choice
affects measured detection latency and should be explicitly
stated.

Export figures programmatically: save all plots as high-
resolution PNG or vector PDF files (use print (gcf,'-dpng','-
r300', filename) in MATLAB). Include the summary table as
CSV for reproducibility.

Sensitivity analysis: include one section that varies detection
thresholds or attack intensity to show how ADR and LMR
respond. This helps demonstrate the stability—sensitivity
tradeoff.

List of stages (message or user counts) and their rationale. Exact
traffic and attack models (distributions, rates, burst patterns).
Detection algorithm description (type, parameters, thresholds).
Number f independent runs and statistical reporting method
(mean + 95% CI). Output artifacts (figures, summary table, raw
logs) and where they are stored. Software and environment
(MATLAB version, toolboxes used, hardware used for
simulation).

8. PRACTICAL IMPLICATIONS

Robustness: The consistent 90% detection rate demonstrates
that the proposed framework is reliable across a wide range of
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loads — a desirable property for IoT deployments with variable
traffic.

Latency sensitivity: The peak detection delay at intermediate
load (2.15 s) may be unacceptable for latency-sensitive IoT
applications (e.g., real-time healthcare, industrial control). Such
use-cases require additional optimization

False positives and QoS: Variability in legitimate message
rates highlight a trade-off: aggressive detection settings protect
against attacks but increase the likelihood of blocking benign
traffic. This trade-off must be carefully managed when
deploying the system in production.

9. RESULTS ANALYSIS

Fig (2)
Results and Discussion

Figure 2 illustrates the performance of the proposed attack
detection system when evaluated with 25 messages. The system
was assessed using three main metrics: Detection Time, Attack
Detection Rate, and Legitimate Messages Rate.

Detection Time:

The system achieved a detection time of approximately 0.19
seconds, which indicates a fast response capability. A short
detection delay is crucial in IoT environments to minimize the
window of opportunity for adversaries to exploit vulnerabilities.

Attack Detection Rate:

The system successfully detected about 90% of malicious
messages, demonstrating a high level of accuracy in identifying
attack traffic. Although not perfect, this detection level
highlights the robustness of the proposed method in mitigating
security threats.

Legitimate Messages Rate:

Around 80% of legitimate messages were correctly classified
and delivered without being blocked. This metric reflects the
trade-off between security and quality of service (QoS). The
20% reduction is attributed to false positives, where some
benign messages were misclassified as malicious.

Discussion

The obtained results confirm that the proposed detection
mechanism provides a reasonable balance between security
effectiveness and service reliability. The high detection rate
combined with the very short detection time indicates that the
system is well-suited for real-time IoT environments.

However, the moderate false positive rate (20%) highlights the
need for further optimization. In particular, techniques such as
machine learning-based classifiers or adaptive filtering could
be integrated to enhance classification accuracy and reduce the
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mislabeling of legitimate messages.

Conclusion

Overall, the results demonstrate that the proposed system is
capable of detecting attacks with high accuracy (~90%),
maintaining a fast detection response (0.19s), and preserving a
relatively high legitimate traffic rate (80%). These findings
underline the potential of the proposed approach as a viable
security solution for IoT networks, while also identifying
opportunities for future improvements in reducing false
positives.

Results at 50 Messages .
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Figure (3) the case of 50 messages, the results demonstrate
further improvements in the system’s performance:

1. Detection Time

The detection time decreased to 0.1 seconds, which is faster
compared to the previous case (0.19 seconds with 25 messages).
This improvement indicates that the system becomes more
responsive as the message volume increases, which is a desirable
property in real-time [oT environments.

2. Attack Detection Rate

The system maintained a high detection accuracy of
approximately 90%, consistent with the earlier results. This
stability suggests that the detection mechanism is robust and
reliable even as the network load increases.

3. Legitimate Messages Rate
The legitimate message rate remained at 80%, indicating a
persistent false positive rate of around 20%. While this is
acceptable for experimental validation, further optimization is
necessary to enhance the system’s reliability, particularly for
mission-critical [oT applications.

Discussion

The results at 50 messages confirm that the proposed detection
framework not only maintains a high detection rate but also
improves in responsiveness with lower detection delay.
However, the unchanged legitimate message rate highlights the
need for additional optimization techniques, such as adaptive
learning algorithms, to reduce false positives without
compromising detection accuracy.
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Figure (4) for the case of 100 messages, the following
observations were recorded:

1. Detection Time

The detection time increased significantly to 0.73 seconds,
compared to 0.19 seconds (25 messages) and 0.1 seconds (50
messages). This result suggests that the system experiences
performance degradation under higher message loads,
highlighting the impact of scalability challenges.

2. Attack Detection Rate

The attack detection rate remained stable at approximately 90%,
which confirms the robustness of the detection mechanism in
identifying malicious traffic regardless of the network load.

3. Legitimate Messages Rate

The legitimate message rate decreased to 73%, compared to
80% in earlier scenarios. This decline indicates a rise in false
positives, where more benign messages were incorrectly
classified as malicious as the system faced higher traffic volume.

Discussion

The results for 100 messages demonstrate that while the
proposed system maintains a high and stable attack detection
rate (~90%), it suffers from increased detection delay and
reduced legitimate traffic throughput as the load increases. This
trade-off suggests that further optimization is required to
improve scalability. Advanced techniques such as machine
learning-based classifiers, lightweight detection mechanisms, or
adaptive thresholds could be introduced to mitigate the increase
in false positives and maintain low detection latency under
heavy traffic conditions.
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Figure (5) for the case of 250 users, the following observations
were obtained:
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1. Detection Time

The detection time further increased to 1.14 seconds, which is
the highest among the tested scenarios. This emphasizes the
scalability limitation of the proposed system, as higher user
loads introduce considerable delays in detection.

2. Attack Detection Rate

The attack detection rate remained consistently stable at 90%,
confirming the robustness of the detection mechanism even
under heavy user traffic conditions.

3. Legitimate Messages Rate
The legitimate message rate reached 79.6%, which shows an
improvement compared to the 100-message case (73%). This
indicates that the system maintained an acceptable throughput of
benign traffic despite the increased number of users, although
false positives remain a concern.

Discussion

The results with 250 users demonstrate that while the system
sustains a robust attack detection rate (~90%), it suffers from
significant detection delays (1.14 seconds). Although the
legitimate traffic acceptance improved compared to the 100-
message scenario, the overall scalability challenge becomes
evident. To address this, further enhancements such as adaptive
detection thresholds, distributed monitoring architectures,
or hybrid machine learning approaches should be considered
to balance detection accuracy with real-time responsiveness in
large-scale IoT networks.

Results at 500 Messages
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For fig (6) the case of 500 users, the following results were
observed:

1. Detection Time

The detection time reached 2.15 seconds, the longest delay
among all scenarios. This indicates that the system suffers from
considerable latency under high user load, raising concerns
about its scalability and suitability for real-time IoT
applications.

2. Attack Detection Rate

The attack detection rate remained stable at 90%, once again
confirming the robustness and consistency of the detection
framework regardless of traffic intensity.

3. Legitimate Messages Rate

The legitimate message rate slightly decreased to 77.4%,
compared to 79.6% in the 250-user case. This suggests that
while the system is still capable of maintaining an acceptable
throughput of benign traffic, the rate of false positives increases
when scaling to higher user levels.
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Discussion:

The findings at 500 users highlight the scalability limitations
of the system. Although the attack detection capability remains
highly reliable (~90%), the sharp increase in detection latency
(2.15 seconds) poses challenges for time-sensitive IoT
scenarios. Furthermore, the reduced acceptance of legitimate
traffic (77.4%) demonstrates a trade-off between detection
accuracy and network performance under heavy load. To
overcome these challenges, future work should investigate load-
balancing techniques, distributed detection frameworks,
and lightweight anomaly detection models to ensure
scalability without sacrificing responsiveness.

Results at 1000 M
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For Fig (7) the case of 1000 users, the following results were
observed:

1. Detection Time

The detection time decreased to 1.44 seconds, compared to 2.15
seconds at 500 users. This reduction suggests improved stability
and processing efficiency of the detection framework when
operating under larger-scale traffic loads.

2. Attack Detection Rate

The attack detection rate remained stable at 90%, confirming
that the system continues to demonstrate consistent robustness
in identifying malicious activity across varying network scales.

3. Legitimate Messages Rate

The legitimate message rate increased to 80.7%, showing an
improvement over the 500-user case (77.4%). This indicates that
the system experiences fewer false positives at higher traffic
levels, leading to better throughput of benign traffic.

Discussion

At 1000 users, the system exhibits scalability and improved
efficiency. While the detection accuracy (90%) remains
consistently high, the reduction in detection time (1.44s) and the
increase in legitimate message acceptance (80.7%) suggest that
the framework adapts well to larger traffic volumes. This
counterintuitive improvement compared to the 500-user case
highlights the potential benefits of network saturation and traffic
distribution in enhancing detection performance. Future studies
could further investigate this behavior and optimize resource
allocation strategies to maintain these performance gains across
diverse IoT environments.
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Fig (8)

The pervious fig (8) illustrates the relationship between the
number of transmitted messages and three key performance
indicators: Detection Time, Attack Detection Rate (ADR), and
Legitimate Message Rate (LMR).

1. In the first subplot, Detection Time vs. Number of
Messages, the detection time initially increases with the
number of messages, reaching a peak of approximately 2
seconds around 500 messages before slightly decreasing at
higher loads. This trend indicates that the system
experiences higher processing overhead as the message
volume grows, but later stabilizes due to adaptive handling
or efficient buffering in the simulation framework.
Detection Time vs Number of Messages the detection
time increases steadily with the number of messages,
reaching its peak of approximately 2.15 seconds at 500
messages. Interestingly, at 1000 messages, the detection
time decreases to 1.44 seconds, suggesting improved
system stability and resource allocation under heavy traffic
conditions.
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2. The second subplot, Attack Detection Rate vs. Number of
Messages, demonstrates a remarkably stable detection
performance, maintaining a value close to 90% across all
tested message loads. This stability confirms that the
proposed detection framework is resilient and scalable,
sustaining its accuracy even under increased traffic
conditions. Attack Detection Rate vs Number of
Messages the attack detection rate remains constant at 90%
across all experiments, demonstrating the robustness of the
detection mechanism and its reliability regardless of
message volume.

The third subplot, Legitimate Message Rate vs. Number of
Messages, exhibits minor fluctuations between 75% and 80%.
The variation can be attributed to transient packet classification
errors during peak load conditions. However, the overall trend
shows improvement as the number of messages increases,
suggesting that the detection mechanism becomes more
consistent with larger datasets, benefiting from the statistical
smoothing effect. Legitimate Message Rate vs Number of
Messages. The legitimate message rate shows some fluctuations,
starting at 73% with 100 messages, improving to 79.6% at 250
messages, slightly decreasing at 500 messages (77.4%), and
reaching its highest value of 80.7% at 1000 messages. This trend
indicates that the system reduces false positives and becomes
more effective in forwarding valid messages as the scale of
traffic increases

Overall, the results validate the robustness of the implemented
MATLAB-based IDS. The system maintains high attack
detection accuracy while adapting efficiently to varying traffic
loads, ensuring reliable performance for secure IoT
environment. These results confirm that the proposed approach
provides stable and reliable detection performance. While
detection time varies with traffic load, the high and consistent
detection rate (90%) combined with the improvement in
legitimate message acceptance validates the framework’s
scalability and efficiency in IoT environments.

Tablel: Comparative Analysis of Network Performance

Legitimate
Message
Rate (%)

Analysis

At very low|
network load,
detection is rapid
and accuracy is
stable, showing the
system’s high
responsiveness.

80.0

Number || Detection Attac‘k
of Users || Time (s) Detection
Rate (%)
25 0.1894 90
50 0.0983 90

The network
achieves its fastest
detection time at
this level,
indicating minimal
interference  and
optimal
communication
efficiency.

80.0
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. Attack Legitimate
l:full}ls l::; l?reit:;tl((;; Detection Message ||Analysis
Rate (%) Rate (%)

Increasing the
number of users
introduces  mild|

100 0.7317 90 73.0 congestion, which
slightly  reduces
the legitimate
message rate.
Detection time
increases due to
heavier traffic, yet

250 1.1436 90 79.6 legitimate message
delivery stabilizes,
reflecting  system
adaptability.
The system
experiences peak
delay, indicating

500 2.1468 90 77.4 congestion  and
reduced
throughput
efficiency.
Performance
recovers as large-
scale  averaging
stabilizes

1000 1.4391 90 80.7 communication
patterns, leading to
improved
legitimacy and
balanced
detection.

The comparative results presented in Table 1 demonstrate the
impact of user scaling on system performance. Detection time
increases with user load, peaking at 2.15 seconds with 500 users,
which reflects the additional overhead introduced under higher
traffic conditions. Interestingly, the detection time decreases to
1.44 seconds at 1000 users, suggesting that the system benefits
from improved stability and optimized resource allocation under
very high load.

The attack detection rate remains constant at 90% across all
scenarios, highlighting the robustness of the detection
mechanism regardless of the number of users. Meanwhile, the
legitimate message rate improves from 73% at 100 users to
80.7% at 1000 users, indicating that the system enhances its
ability to correctly classify and forward valid messages as the
scale increases.

This analysis confirms that the proposed approach maintains
high security efficiency while adapting to varying network sizes,
with a notable balance between detection accuracy and
communication reliability

Table (2) detailed analysis of comparative result

Num_Messa geslDetection_Time_seclAttack_Detection_RatelLegitimate_Rate
25 0.1804 o0 80

50 0.0983 o0 80

100 0.7317 90 73

250 1.1436 90 79,6000

500 2.1468 920 77.4000

1000 143N 90.0000 80.7000

Detailed Analysis of Comparative Results

Table reference: Table 2 (see above) summarizes the system
performance for six traffic-load scenarios: 25, 50, 100, 250, 500
and 1000 messages. The measured metrics are Detection Time
(s), Attack Detection Rate (%) and Legitimate Message Rate
(%).

10. Numerical summary
Detection time values: 0.1894, 0.0983, 0.7317, 1.1436, 2.1468,
1.4391 (seconds).

Mean detection time = 0.958 s.

Median detection time = 0.938 s.
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Standard deviation (population) ~ 0.714 s (sample std ~ 0.782
s).

Legitimate message rates: 80.0, 80.0, 73.0, 79.6, 77.4, 80.7 (%).
Mean legitimate message rate = 78.45%.

Median = 79.8%.

Standard deviation (population) =~ 2.646% (sample std =~
2.898%).

Attack detection rate: constant at 90% across all scenarios.

These summary statistics indicate moderate variability in
detection time (large relative spread) and smaller variability in
legitimate message rate.

11. Observed trends and interpretation
Non-linear behavior of detection time.

Detection time shows a non-monotonic relationship with load: it
is very low at light loads (0.098-0.189 s for 25—50 messages),
rises as load increases (peaking at 2.15 s for 500 messages), and
then decreases again at the highest tested load (1.439 s at 1000
messages). This pattern suggests two competing mechanisms:

Queueing and processing overhead that dominates at
intermediate loads (causing the peak at 500 messages).
Processing delays and contention for CPU/IO resources
typically cause an increase in detection latency as traffic grows.

Statistical aggregation / stabilized traffic patterns that appear at
very high load (1000 messages) can smooth transient spikes and
improve average detection time, likely because the detection
algorithm benefits from more stable statistical features or from
batching effects in the simulator.

Stable detection accuracy

The attack detection rate is consistently 90% for all scenarios.
This indicates that the detection rule/algorithm maintains
sensitivity to attack patterns independent of load. The invariant
ADR implies robustness of the detection criterion against
changes in traffic volume (no degradation in recall/true-positive
ability).

Variation in legitimate message preservation

Legitimate message rate dips to 73% at 100 messages (highest
false-positive effect in this set), recovers to ~79.6% at 250
messages, drops slightly at 500 users (77.4%), and finally
improves to 80.7% at 1000 messages. The fluctuations in
legitimate rate point to load-dependent false-positive behavior:
at certain intermediate loads the detector tends to misclassify
benign messages more often, while under very high load the
classifier becomes more conservative or benefits from stabilized
input statistics, which reduces false positives.

12. Technical hypotheses

Intermediate-load congestion (peak at 500 messages): the
system likely experiences increased packet arrival bursts that
overwhelm internal queues or single-threaded processing steps
in the simulation implementation, producing longer tails in
detection latency.

Stabilization at high loads (1000 messages): at very large
sample sizes the feature distributions used by the detector may
converge (law of large numbers), improving classifier decision
stability and allowing internal optimizations (e.g., larger
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effective batch sizes, fewer transient fluctuations), thus reducing
average detection time and false positives.

Constant ADR but varying LMR: the detector appears tuned
for high sensitivity (recall) at the expense of specificity in some
scenarios. Maintaining 90% ADR implies thresholds favor
detection, but the threshold’s interaction with traffic statistics
leads to variable false-positive rates.

13. CONCLUSION

This research paper successfully achieves its intended
contributions toward advancing secure and scalable intrusion
detection in IoT networks. Through the design and
implementation of a MATLAB-based simulation framework,
the research provides a reproducible and lightweight
environment for evaluating intrusion detection performance
under varying network loads. The experimental results clearly
demonstrate that the proposed framework maintains a consistent
90% detection accuracy while efficiently adapting to larger-
scale traffic conditions, achieving improved stability and
reduced detection delay at higher message volumes. The
comprehensive analysis confirms that the system not only
sustains robust detection capabilities but also enhances
legitimate message preservation, reflecting reduced false
positives and improved throughput efficiency. Moreover, the
observed stability—security trade-off highlights the system’s
adaptability in balancing detection performance with
communication reliability—an essential characteristic for real-
world IoT applications. By quantifying the interdependence
among network scale, detection efficiency, and system stability,
this work establishes a solid benchmark for future IDS research.
The framework and findings presented herein offer practical
insights and design principles for building resilient, adaptive,
and real-time security mechanisms suited for next-generation
IoT environments such as smart cities, healthcare systems, and
industrial automation networks. IN summary, the proposed
framework not only fulfills its objectives but also contributes a
valuable foundation for ongoing exploration in the domain of
IoT security—bridging the gap between theoretical detection
models and their practical deployment in dynamic, large-scale
networks. This research has demonstrated the critical
importance of security optimization in large-scale IoT
networks, achieving the primary objectives of designing and
validating a resilient and scalable intrusion detection framework.
By implementing a MATLAB-based simulation environment,
the study effectively analyzed how detection mechanisms
behave under varying user loads, traffic intensities, and
adversarial conditions—filling a vital research gap in IoT
security evaluation. The proposed framework consistently
achieved a 90% attack detection rate while maintaining high
accuracy and reduced detection time, even as the number of
users scaled from 25 to 1000. This consistency proves the
robustness and adaptability of the detection model, ensuring
reliable protection against malicious activities without
compromising network performance. Additionally, the
improvement in legitimate message preservation highlights the
framework’s capability to minimize false positives, which is
essential for maintaining seamless IoT communication and
service reliability. The results underscore the central role of
security as a foundational element of IoT system design. In
an ecosystem where billions of interconnected devices
continuously exchange data, achieving real-time detection with
minimal computational overhead is not merely beneficial—it is
indispensable. This work establishes a practical pathway toward
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lightweight, adaptive, and intelligent security frameworks
that can be deployed in real-world IoT infrastructures, including
smart healthcare, industrial automation, and intelligent
transportation systems. Ultimately, the study not only fulfills its
research objectives but also contributes to strengthening the
security—performance balance in IoT environments. The
findings and proposed methodology set a benchmark for future
work aimed at enhancing intrusion detection systems, ensuring
that scalability, resilience, and security remain core pillars of
next-generation IoT network design.
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