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ABSTRACT 

Artificial Intelligence (AI) has dramatically transformed 

various aspects of human life and activities, including the 

composition of essays and texts. AI technologies have enabled 

computers to generate text that closely resembles human 

writing and this has raised concerns with implications for 

academic integrity, creative authenticity, and professional 

communication. This study aim to investigates the linguistic 

characteristics and predictive mechanisms underlying AI-

generated essays, aiming to identify markers that distinguish 

them from human-authored texts. 1,000 essays with diverse 

topics and writing styles were generated using ChatGPT, 

DeepSeek, and Gemini and a comparable corpus of human-

written essays were also collected from publicly available 

sources. The research work used natural language processing 

(NLP) techniques and machine learning models to analyze 

word frequency, next-word prediction patterns, and stylistic 

elements in a corpus of AI-generated and human-written 

essays.The results show that the temperature settings in AI 

models significantly influence word selection, with higher 

temperatures increasing randomness and reducing the 

likelihood of predictable word choices. Machine learning 

classification using Support Vector Machines (SVM) of 98% 

and Random Forests of 95.75% achieved high accuracy in 

differentiating between AI and human essays, highlighting the 

effectiveness of linguistic features for automated detection. The 

study concludes that AI-generated content can be reliably 

distinguished from human writing using stylistic and lexical 

features, contributing to the development of more reliable AI 

assessment tools and a better understanding of NLP model 

behavior. 
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Patterns 

Keywords 
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1. INTRODUCTION 
Recent advances in natural language generation have 

significantly improved the diversity and quality of texts 

generated by chatbots such as ChatGPT and DeepSeek, making 

them almost indistinguishable from human-written texts. This 

has raised concerns about potential misuse, including the 

spread of misinformation or disruption of educational systems 

[1]. Research highlights that AI-generated texts often exhibit 

specific characteristics, such as repetitive phrasing and lack of 

depth in contextualization [2] [3] which poses a challenge for 

AI-generated content in academic contexts, creative writing 

and professional communication where thorough 

contextualization and critical engagement with existing 

literature are needed [4][5]. AI-generated text and machine 

generated text avoids language that is not commonly used and 

lack emotional semantics and personal biases found in human 

language [6]. 

Different writers, be they human or machine, exhibit distinct 

linguistic fingerprints. This perception raises questions about 

the underlying mechanisms of AI word prediction and the 

extent to which specific patterns can be attributed to AI-

generated text. Studies have shown that repetitive phrasing and 

a lack of depth in contextualization have been attributed to the 

algorithms used in training AI models, which tend to prioritize 

coherence and clarity over understanding and originality [7] 

while for humans, these fingerprints are shaped by individual 

experiences, education, and emotional depth. Understanding 

these patterns is crucial for refining AI models and improving 

their applicability across different contexts, including 

education, creative writing, and professional communication.  

The aim of artificial intelligence (AI) has been to develop 

intelligent systems capable of using language as proficiently as 

humans, facilitating fluent conversations and a meticulous 

comprehension of language intricacies. According to McShane 

and Nirenburg, language processing within AI models is 

conceptualized from an agent perspective, integrated into a 

broader model of perception, reasoning, and action [8]. Central 

to this perspective are the core prerequisites for success, 

including the ability to extract meaning from linguistic 

expressions, represent them in memory, and utilize these 

representations for decision-making across verbal, physical, 

and mental actions. The multifaceted nature of linguistic 

phenomena ranges from morphological ambiguity to pragmatic 

ambiguity. Semantic analysis emerges as a pivotal sub-task of 

NLP, enabling computers to derive meaning from textual data 

through grammatical analysis and contextual interpretation. 

Semantic classification models, including topic classification, 
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sentiment analysis, and intent classification, demonstrates the 

practical applications of semantic analysis in various domains, 

from customer service to marketing analytics. Linguistic 

analysis provides a rich theoretical framework and 

methodological insights crucial for understanding the 

complexities of language generation in AI systems [8].  

The emergence of generative artificial intelligence (AI) 

challenges traditional notions of creativity, prompting a 

reevaluation of its essence and its relationship to human 

creativity [9]. Generative AI exhibits an uncanny ability to 

produce original content resembling human creative choices, 

such as writing, painting, and composing music, blurring the 

lines between human and machine creativity. Despite operating 

on algorithmic principles, generative AI derives its rules from 

training data, simulating human-like creative processes. Two 

responses have emerged in the creative sector: one suggesting 

that AI lacks individual expression characteristic of human 

creativity, while the other argues that AI merely recombines 

existing cultural elements into new forms, devoid of genuine 

creativity. The rise of generative AI challenges conventional 

notions of creativity, raising fundamental questions about its 

nature and the role of machines in creative endeavors [9].   

The primary focus for detecting AI-generated text is linguistic 

analysis, which breaks out syntactic patterns, word choices, and 

sentence structures. When a person uses too many words, 

repeats the same thing, or breaks the rules, this is a red signal 

and anomaly detection methods point out when language 

patterns are broken. Machine learning models trained to spot 

anomalies can distinguish AI writing from human written 

language. Determining if writing was created by AI is 

complicated and ever-changing. Linguistic signals, 

inconsistency analysis, information inspection, stylometric 

quirks, bias identification, outliers, and purpose-built models 

are crucial [10].  

In 2023, an analysis [11] revealed a notable and uneven surge 

in the frequency of certain keywords, both individually and 

collectively. It is speculated that a minimum of 60,000 

publications (accounting for just above 1% of total articles) 

received assistance from LLMs. This figure could potentially 

be adjusted and further detailed through the examination of 

additional paper attributes or the discovery of more keywords 

suggestive of LLM involvement.  

[12] study investigates the impact of Artificial Intelligence 

(AI),specifically generative AI technologies (GAI), on the 

linguistics of academic article titles. Triggered by suspicious of 

increased usage of specific verbs in article titles, this research 

hypothesizes that GAI tools may be influencing the language 

of scientific communication. To explore this hypothesis, we 

conducted a comprehensive analysis on the frequency and 

distribution of 15 selected verbs in research article titles, using 

data extracted from the SCOPUS database spanning 2015 to 

2024. The methodology integrates qualitative observations 

with a bibliometric approach, examining the presence and 

trends of these verbs across multiple scientific disciplines. The 

findings reveal a marked increase in these verbs, pointing 

towards AI’s involvement in title generation. We also explore 

document characteristics, such as disciplinary backgrounds and 

publication contexts, to gauge AI’s impact on academic 

writing. Furthermore, the research attempts to quantify the 

extent of AI-assisted title generation. Despite several 

limitations, this investigation paves the way for future studies 

to broaden the linguistic and database scope. It underscores the 

need for establishing AI usage standards in academic 

publishing, contributing valuable insights into the ongoing 

dialogue about AI’s integration into academic writing. 

The quick development of AI-generated writing has sparked 

serious questions about linguistic distinctiveness, plagiarism, 

and validity.  Differentiating between machine-generated and 

human-authored material has become a crucial difficulty as AI 

models like as ChatGPT, DeepSeek, and Gemini create content 

that seems more and more human.  Because students and 

content producers may abuse AI systems to produce essays, 

reports, or articles without giving due credit, publishers and 

educators are concerned about the hazards of plagiarism.  The 

diversity and originality of written speech are threatened by the 

lack of linguistic distinctiveness in AI outputs, which are 

frequently typified by repeated phrasing, predictable word 

selections, and generic structures.  These worries also extend to 

the ethical and legal spheres, where AI-generated 

impersonation or false information may erode confidence in 

digital interactions. 

This research aims to explore the predictive mechanisms 

underlying word choice in AI systems, investigate the 

parameters that influence linguistic outputs, and analyze the 

frequency of commonly used words to identify potential 

markers of AI-generated content. 

2. LITERATURE REVIEW 

2.1 Text Representation 
In natural language processing (NLP), text representation is a 

fundamental step that involves converting textual data into 

formats that machine learning models can process effectively 

(Worth, 2023). This typically encompasses two primary stages: 

tokenization and word embedding. 

2.2 Tokenization 
Tokenization is the process of dividing text into smaller units 

known as tokens, which can be words, subwords, or characters. 

Recent studies have highlighted the significance of 

tokenization strategies in handling morphologically rich and 

low-resource languages. For instance, MorphTok introduces a 

morphology-aware segmentation approach that improves 

tokenization for Indian languages by incorporating linguistic 

features into the tokenization process [13]. Similarly, research 

by [14] demonstrates that sentence piece tokenization 

outperforms Byte Pair Encoding (BPE) in zero-shot Named 

Entity Recognition tasks for Indic languages, owing to its better 

preservation of linguistic structures. Furthermore, [15] propose 

an optimized BPE configuration that reduces token counts and 

enhances performance, particularly in low-resource language 

models.  

2.3 Word Embedding 
Word embeddings are numerical representations of words in a 

continuous vector space, capturing semantic relationships 

based on contextual usage. Advancements in this area include 

the development of sense-aware contextualized word 

embeddings, which effectively encode semantic changes over 

time and context [16]. Additionally, [17] discusses the 

evolution of word embedding techniques and their applications 

in capturing semantic spaces in NLP. In specialized domains, 

such as psychiatric speech analysis, word embeddings have 

been utilized to unravel the structure of meaning in psychosis, 

demonstrating their versatility and applicability across various 

fields [18]. 
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Figure 2.1: Word embeddings projection from 60 dimensions 

into 2 dimensions, similar words are clustered close to each 

other in semantic space, blue color consider neutral words, red 

color negative words and green positive. 

 

Words such as “bad”, “worst”, “good”, and “nice” can be 

analyzed within a semantic space to understand their emotional 

and contextual similarities. For example, “bad” and “worst” 

are semantically related through their negative connotations, 

whereas “good” and “nice” are associated with positive 

sentiment and are semantically distant from the negative ones 

[18]. In a semantic vector space, words with similar meanings 

cluster close together, while words with different meanings are 

positioned farther apart, revealing underlying linguistic 

relationships [16]. 

 

Word embeddings used in modern language models are dense 

vectors—continuous numerical representations without zero 

elements—that typically range between 50 and 1000 

dimensions [19]. These embeddings are generated through self-

supervised training on large-scale corpora, enabling models to 

automatically learn contextual and semantic patterns without 

manually labeled data [20]. Among the popular word 

embedding techniques, Word2Vec represents a static approach 

where each word is assigned a fixed vector regardless of 

context. For instance, in the sentences “We trained a deep 

neural network to recognize patterns in the data” and “We 

designed a network to enhance the data transfer rate”, the term 

“network” would be encoded identically despite its distinct 

meanings—one referring to a machine learning structure, and 

the other to a communication system [20]. 

In contrast, contextual embeddings such as those generated by 

BERT (Bidirectional Encoder Representations from 

Transformers) consider the surrounding context of a word. 

Here, the model distinguishes between different meanings of 

“network” and assigns different vectors accordingly. For 

example, in the phrase “neural network”, the embedding for 

“network” would be close to other AI-related terms, reflecting 

its usage within the domain of deep learning [16][19]. There is 

also sparse embedding, where the vector contains zero 

elements. One widely used method to generate sparse 

embeddings is TF-IDF (Term Frequency-Inverse Document 

Frequency), which evaluates the importance of a term within a 

document relative to a collection of documents. The process 

typically involves three stages: computing term frequency, 

computing inverse document frequency, and multiplying the 

two to generate a weighted representation [20]. 

 

First stage is counting the number of times term t occurs in 

document d in some training corpus, and then taking the log of 

the count plus 1 to avoid undefined behavior when the count is 

0, the equation is given by: 

TF (t, d) = log10 (count (t, d) + 1)                  (1) 

Second stage is to count the number of document DF in which 

contains the term t, then calculating the IDF as: 

IDF = log10(N/DF)                  (2) 

where N is the total number of documents in training corpus. 

Third stage is to calculate the weighting TF-IDF as: 

Wt,d = TFt,d * IDFt                     (3) 

The limitation of this method is the dimension of the vectors 

representing words grows quickly e.g., if there is |V|=1000000 

unique words in corpus then the dimension is |V|, also this 

methods dose not capture the semantic, context and other 

structures of words and sentences. 

2.4 ChatGPT and GPT-3.5 Series 
ChatGPT is a large language model based on the Generative 

Pre-trained Transformer (GPT) architecture, developed by 

OpenAI. It currently exists in two versions: GPT-3.5 and GPT-

4, with GPT-4 being the most recent and advanced version 

([21]. The GPT-3.5 series is an improvement over the original 

GPT-3 models and is designed for general-purpose language 

generation. These models can generate coherent text in 

response to a wide range of prompts and instructions [23]. 

Among the prominent models in the GPT-3.5 series are text-

davinci-003 and gpt-3.5-turbo. While text-davinci-003 is 

effective for text completion tasks, gpt-3.5-turbo being a fine-

tuned and optimized version excels in chat-based applications 

and offers better performance at a significantly lower cost 

(approximately one-tenth) compared to text-davinci-003 when 

accessed via OpenAI's API [22]. 

2.5 BERT 
BERT (Bidirectional Encoder Representations from 

Transformers) is a powerful transformer-based language model 

that was pre-trained on massive corpora, including the 

BooksCorpus (800 million words) and English Wikipedia (2.5 

billion words). It uses the WordPiece tokenization method with 

a vocabulary of approximately 30,000 subwords to convert text 

sequences into token embeddings [18] [23]. BERT introduces 

special tokens such as [CLS] to indicate the start of a sequence 

and [SEP] to mark the end. The embedding of the [CLS] token 

is commonly used to represent the entire input sequence for 

downstream tasks like sentence classification (Wang et al., 

2023). There are two main versions of BERT: BERT Base (110 

million parameters) and BERT Large (340 million parameters), 

with the latter offering improved performance on large-scale 

NLP benchmarks [24]. 

2.6 Machine Learning Classifiers 
In the context of linguistic analysis and predictive pattern 

recognition, supervised machine learning classifiers have been 

widely adopted to automate text classification and evaluate 

language patterns [30]. These models learn to associate textual 

features with specific outcomes, making them highly effective 

for tasks such as author attribution, sentiment analysis, and 

distinguishing between AI-generated and human-authored 

texts [26]. Recent studies have demonstrated the utility of 

supervised classifiers in analyzing language structures, token 

distributions, and predictive trends across various types of 

generated content [27]. This section reviews three foundational 

classifiers—Logistic Regression, Support Vector Machines 

(SVM), and Random Forests—highlighting their roles, 

mechanisms, and relevance to analyzing linguistic and 

predictive patterns in AI-generated essays [28][29]. 
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Supervised machine learning classifiers are algorithms trained 

on labeled datasets to predict outcomes based on input features. 

Some of the widely used classifiers are Logistic Regression, 

Support Vector Machines (SVM), and Random Forests. 

2.6.1 Logistic Regression 
Logistic Regression is a statistical model employed for binary 

classification tasks, estimating the probability that a given input 

belongs to a particular category. It utilizes the sigmoid function 

to map real-valued inputs into a range between 0 and 1, 

representing probability scores . Predictions are made by 

applying a threshold (commonly 0.5) to these probabilities; 

values above the threshold are classified into one category, and 

those below into another . Recent advancements have 

introduced dynamic logistic ensemble models, enhancing 

classification accuracy by recursively partitioning datasets and 

constructing multiple logistic models. 

2.6.2 Support Vector Machine (SVM) 
Support Vector Machines are supervised learning models used 

for classification tasks, aiming to find the optimal hyperplane 

that separates data points of different classes with the maximum 

margin . For datasets that are not linearly separable, SVMs 

employ the "kernel trick" to transform data into higher-

dimensional spaces where a linear separator can be found . 

Recent research has proposed novel kernel functions, such as 

the Cholesky kernel, which consider the variance-covariance 

structure of the data to improve classification performance. 

2.6.3 Random Forest 
Random Forest is an ensemble learning method that constructs 

multiple decision trees during training and outputs the mode of 

their predictions for classification tasks . Each tree is trained on 

a random subset of the data and features, introducing diversity 

and reducing overfitting . Recent studies have focused on 

improving Random Forest algorithms by enhancing the 

accuracy and diversity of the individual trees, leading to better 

overall performance. 

3. METHODOLOGY 

3.1 Data Collection 
The data collection process for this study involved collection 

of AI-generated and human-authored essays, with careful 

attention to variability in content style, topic diversity, and text 

generation parameters. For the AI-generated essay corpus, 

1000 essays were created using three generative language 

models: ChatGPT, DeepSeek, and Gemini. To ensure balanced 

representation and comparability across models, approximately 

333 essays were generated by each system with Gemini getting 

additional 1 essay to make it 334. The essay prompts covered a 

wide range of topics, including education, technology, social 

issues, and abstract concepts.  

The human-authored essay corpus consist of a comparable set 

of essays compiled to serve as a benchmark for analysis. These 

essays were sourced from publicly available educational 

repositories, academic forums, student writing samples, and 

open-access essay databases. The selected essays were 

carefully matched in terms of topic and style with those 

generated by AI, to ensure consistency in content domain and 

facilitate direct comparison.  

The dual-sourced datasets comprising of both machine-

generated and human-written texts provided the foundation for 

analyzing word frequency distributions, next-word prediction 

behavior, and model-specific language patterns, in alignment 

with the core objectives of the study. 

3.2 Linguistic Analysis: Next-Word 

Prediction Analysis 
This analysis help evaluate how generative language models 

predict subsequent words in a text sequence, and how variables 

such as temperature settings, contextual cues, and token 

probability distributions influence these predictions. The 

analysis helps in understanding the decision-making process of 

AI models in sequence generation and lexical variation. 

Let a sequence of tokens be represented as: 

𝑋 = (𝑥1, 𝑥2, 𝑥3 … , 𝑥𝑡)      (4) 

The task of next-word prediction involves estimating the 

probability distribution over the vocabulary 𝑉 for the next 

token x_(t+1), given the context tokens: 

𝑃(𝑥𝑡+1|𝑥1, 𝑥2, 𝑥3 … , 𝑥𝑡) = 𝑃(𝑥𝑡+1|𝑋)    (5) 

A language model 𝑓 such as GPT or BERT-style decoder) 

computes this distribution using: 

𝑃(𝑥𝑡+1|𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)        (6) 

Where  𝑧 ∈ 𝑅|𝑉| is the output logits vector produced by the 

model for the next word, and the softmax function is defined 

as: 

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗|𝑉|

𝑗=1

         (7) 

Each   corresponds to the log it score of the i-th vocabulary 

token. 

3.2.1 Temperature Scaling 
Temperature τ is a hyperparameter that controls the "creativity" 

or randomness of the output distribution. Temperature scaling 

modifies the log its before applying softmax: 

𝑃(𝑥𝑡+1 = 𝑤𝑖|𝑋) =
𝑒

𝑧𝑖/τ

∑ 𝑒
𝑧𝑗/τ|𝑉|

𝑗=1

      (8) 

τ<1: Sharper distribution (model becomes more confident and 

deterministic). 

τ>1: Smoother distribution (more diverse and creative outputs). 

We conduct this experiment at three temperature levels: 0.2 

(low randomness), 0.7 (moderate randomness), and 1.0 (high 

randomness). 

3.2.2 Contextual Cue Evaluation 
To assess the impact of context, the conditional probability 

𝑃(𝑥𝑡+1|𝑋) is measured under two conditions: 

Full context: the complete sequence 𝑥1, 𝑥2, 𝑥3 … , 𝑥𝑡 

Reduced context: truncated or noisy context (remove preceding 

sentence or mask key tokens) 

The contextual influence score C can be defined as the 

Kullback-Leibler (KL) divergence between the next-word 

distributions under full and reduced contexts: 

𝐶 = 𝐷 (𝑃𝑓𝑢𝑙𝑙|| 𝑃𝑟𝑒𝑑𝑢𝑐𝑒)

= ∑ 𝑃𝑓𝑢𝑙𝑙(𝑤𝑖) log
𝑃𝑓𝑢𝑙𝑙(𝑤𝑖)

𝑃𝑟𝑒𝑑𝑢𝑐𝑒(𝑤𝑖)
⁄

|𝑉|

𝑖=1

(9) 

This measures how much the context changes the next-token 

prediction. 
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3.2.3. Token Probability Analysis 
For each generated word 𝑥𝑡+1, we record: 

The maximum predicted probability: 𝑚𝑎𝑥𝑖  𝑃(𝑥𝑡+1 = 𝑤𝑖|𝑋) 

The rank of the selected token in the vocabulary distribution 

The entropy of the output distribution: 

 𝐻(𝑋) = 

− ∑ 𝑃(𝑥𝑡+1 = 𝑤𝑖|𝑋)
|𝑉|
𝑗=1  𝑙𝑜𝑔 𝑃(𝑥𝑡+1 = 𝑤𝑖|𝑋)  (10) 

 

Entropy measures the uncertainty of the model at each 

prediction step. Higher entropy suggests more uncertainty and 

creativity; lower entropy indicates more deterministic output. 

3.3 Analytical Techniques: Word 

Frequency Analysis 
To identify distinctive lexical patterns between human and AI-

generated texts, we employed TF-IDF (Term Frequency-

Inverse Document Frequency) to evaluate the importance of 

words in the corpus, emphasizing words unique or particularly 

significant to each class. Additionally, n-grams analysis 

(bigrams, trigrams, etc.) was utilized to capture contextual 

word sequences and phrases that may differentiate writing 

styles.  

3.4 Predictive Pattern Analysis 
Analyzing next-word probability distributions enabled us to 

examine the fluency and coherence patterns inherent in human 

versus AI texts. By modeling the likelihood of subsequent 

words given previous contexts, we identified patterns 

indicative of AI-generated text, which often exhibit repetitive 

or predictable sequences. This approach provided insight into 

the structural differences in language generation, supporting 

feature engineering for classification models. 

3.5 Classification Testing 
We conducted machine learning classification experiments to 

evaluate the ability to distinguish AI-generated essays from 

human-written ones. Algorithms such as Support Vector 

Machines (SVM) and Random Forests were trained on features 

derived from frequency analysis and predictive pattern metrics. 

Model performance was assessed using standard metrics like 

accuracy, precision, recall, and F1-score, along with confusion 

matrices to analyze classification errors and model robustness. 

3.6 Evaluation metrics 
This section describes the evaluation metrics used for 

evaluating the methods for differentiating between AI-

generated essay and human written essay. 

3.6.1 Precision, Recall, Accuracy and F1 score 
Precision, recall and F1 are metrics that measure how well a 

classifier performs on predicting the correct target class. The 

metrices are derived from confusion matrix which is for binary 

classification problem a 2×2 matrix, where the rows are the true 

classes, and the columns are the predicted class. The upper left 

cell in confusion matrix is called true negative (TN) which 

contains the instances of negative class that has been correctly 

classified as negative, the lower right cell is true positive (TP) 

which is the target class in interest and contains the instances 

that has been correctly classified as positive, the lower left cell 

is false negative (FN) cell and contains the instances that has 

been incorrectly classified as negative, The last cell is the upper 

right cell called false positive (FP) that contains the instances 

that has been misclassified as positive while they belong to the 

negative class. These metrics are calculated based on the 

confusion matrix as follows:  

Accuracy: is the ratio of correctly classified instances out of the 

total instances, this metric is not suitable for imbalanced dataset 

and dose not gives how well the classifier perform on specific 

class, but it gives the performance for classifying both negative 

and positive classes. 

Accuracy=(TP+TN) ⁄ (TP+TN+FP+FN)      (11) 

Precision: is the ratio of true positive class out of all positive 

prediction. Precision measures the quality of the classifier 

when it predicts the positive class where high precision 

indicates a low rate of false positive errors, but precision does 

not give how much of all positive classes the classifier could 

identify therefore precision is combined with another metrics 

such Recall. 

Precision=TP ⁄ (TP+FP)      (12) 

 Recall: is the ratio of true positives out of all actual positive 

instances, it measures how well the classifier identifies positive 

instances, where high recall indicates a low rate of false 

negative errors, recall is often combined with precision for 

more precise measurement. 

Recall=TP ⁄ (TP+FN)      (13) 

F1 Score: this metric is called the harmonic mean of both 

precision and recall, this combines precision and recall into a 

one single metric that evaluates the trade-off between precision 

and recall, it can be used to compare classifiers. The value of 

F1 score is high if both precision and recall are high while if 

precision or recall has low value then F1 score will be low. 

F1=2⁄(1/PPPrecision+1/Recall)  = 

2*(Precision* Recall)/ (Precision+Reall)      (14) 

 

4. RESULTS AND DISCUSSIONS 
Next-Word Prediction Analysis 

The results in table 1 and figure 2 demonstrates that 

temperature settings significantly influence next-word 

prediction probabilities.  Using a sample sentence "In the 

digital age social media has become an inte...", the prediction 

probabilities for the word "res" at temperature settings of 0.7, 

1.0, and 1.5 are 0.8563, 0.4896, and 0.0763, respectively. As 

the temperature increases from 0.7 to 1.5, the prediction 

probability of the word "res" decreases dramatically. The 

probabilities of other words such as "ress," "view," "get" also 

change with temperature settings. This indicates that higher 

temperature values increase the randomness of word selection, 

reducing the likelihood of highly probable words being chosen. 

This aligns with the research objective of examining how NLP 

parameters like temperature influence word selection. 

Table 1. Summary Table of Predictions (Temperature vs 

Word Probability) 

 Temperature  

Predicted 

Word   Probability 

0 0.7 Res 0.856321 

1 0.7 Ress 0.05806 

2 0.7 View 0.026478 

3 0.7 - 0.009751 
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4 0.7 Get 0.005571 

5 1 Res 0.489584 

6 1 Ress 0.074421 

7 1 View 0.042954 

8 1 - 0.021346 

9 1 Get 0.014426 

10 1.5 Res 0.076271 

11 1.5 Ress 0.021724 

12 1.5 View 0.015059 

13 1.5 - 0.009448 

14 1.5 Get 0.007276 

 

Fig 2: Temperature probability of Next-word prediction for essay: 'In the digital age social media has become an inte...' 

Word Frequency Analysis using TF-IDF (Term 

Frequency–Inverse Document Frequency) 

Word frequency analyses using TF-IDF revealed distinctive 

vocabularies. Figure 3 and figure 4 shows the word frequency 

analysis applied TF-IDF to distinguish common words in AI-

generated vs. human-authored essays. The AI-generated texts 

often contain words related to cooperation, media, education, 

and technology, such as "children," "media," "cooperation," 

"famous," and "skills."  The human essays tend towards 

personal, social, and experiential words like "like," "think," 

"know," "friends," "love," "school," etc. The Bigrams highlight 

these differences of  AI texts frequently include technical and 

systematic phrases ("childrenlearn," "helpchildren," 

"longterm," "educationlife"), whereas human texts show 

colloquial and social expressions ("feel like," "think going," 

"good thing"). Table 2 shows the top typical words frequency 

analysis using TF-IDF. 

Table 2: Top AI/Human 

Top AI-typical 

words (TF-IDF) 

 

['children' 'media' 'cooperation' 

'famous' 'learn' 'cooperate' 

'education'  'competition' 'privacy' 

'ai' 'skills' 'celebrities' 'compete' 

'learning'  'games' 'public' 

'important' 'data' 'systems' 'taught'] 

Top Human-typical 

words (TF-IDF) 

['really' 'just' 'don' 'know' 'like' 

'think' 'going' 'want' 'feel' 'good' 

'time' 'wonder' 'right' 'friends' 'love' 

'guess' 've' 'home' 'minutes' 'class'] 
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Fig 3: Distinguish common words in AI-generated vs. human-authored essays 
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Figure 4: Top AI-generated Bigrams and human-authored essays Bigrams 

Figure 5 shows the bar chart displaying the TF-IDF score 

difference for top words between AI-generated and human-

authored essays. The x-axis represents the TF-IDF score 

difference, and the y-axis lists the words. The chart highlights 

words such as "children," "media," and "cooperation" as more 

distinctive in AI-generated essays. 

Figure 5: TF-IDF score difference for top words between 

AI-generated and human-authored essays 

The bar charts in figure 6a, 6b and 6c shows the frequency of 

top bigrams in Gemini-generated, Deepseek-generated and 

ChatGPT-generated essays. The x-axes represents bigram 

frequency, and the y-axes lists the bigrams. The chart highlights 

bigrams like "long term," "older adults," and "public health" as 

frequent in Gemini-generated essays,  bigrams such as 

"computer games," "help children," and "mental health" as 

frequent in Deepseek-generated essays and  bigrams like 

"children learn," "famous people," and "children taught" as 

frequent in ChatGPT-generated essays. 
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Figure 6: Top Gemini(a), DeepSeek(b) and ChatGPT(c) generated essays Bigrams 

Figure 7(a) shows a scatter plot representing the clustering of 

AI-generated and human-authored essays. The x-axis 

represents PCA Component 1, and the y-axis represents PCA 

Component 2. The chart illustrates the separation between AI 

and human essays in the PCA space. The color of the points is 

used to distinguish between AI-generated essays (yellow) and 

human-generated essays (purple). The distribution of points 

shows a clear separation between the two groups, indicating 

that the essays can be distinguished based on the features 

extracted. The clustering pattern suggests that there are distinct 

stylistic or content-related characteristics that differentiate AI-

generated texts from those produced by humans. 

Figure 7(b) presents a three-dimensional Principal Component 

Analysis (PCA) visualization of Term Frequency-Inverse 

Document Frequency (TF-IDF) vectors, contextualized by 

cosine similarity. This graphical representation is instrumental 

in understanding the distribution and clustering of AI-

generated and human-generated text data. The color coding is 

used to differentiate between AI-generated texts (blue) and 

human-generated texts (red), providing a visual distinction 

between the two categories. The clusters of points are 

indicative of the cosine similarity context, where texts with 

similar content and structure are grouped together. The 

visualization reveals that while there is a general overlap 

between AI and human-generated texts, there are distinct 

regions where one category dominates over the other. This 

suggests that certain characteristics of the texts can be 

differentiated based on their origin. The clear demarcation of 

clusters also suggests potential areas for improvement in AI 

text generation to bridge the gap with human-like text 

characteristics. 

 

 

 

 

 

 

 

(a) 
(b) 

(c) 
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Figure 7: Figure 7(a) shows the scatter plot representing the clusterings of AI-generated and human-authored essays while 

figure 7(b) shows the 3D PCA of TF-IDF Vectors with cosine similarity context. 

Machine Learning classification 

t-Distributed Stochastic Neighbor Embedding (t-SNE) 

Mapping of AI vs Human Essays 

The t-SNE in figure 8 shows a two-dimensional representation 

of high-dimensional essay data, distinguishing between AI-

generated (blue) and human-authored (red) texts. In the 

scatterplot, each point represents an individual essay, and their 

spatial arrangement is informed by their linguistic and semantic 

similarities. The result reveals a clear clustering pattern. AI-

generated essays form distinct, tight clusters, especially on the 

right side of the plot, whereas human-written essays are mostly 

concentrated on the left, though with a more dispersed 

structure. This separation strongly suggests that AI and human 

essays exhibit consistent, distinguishable linguistic patterns, 

validating the premise that AI-generated text can be identified 

through its structural and lexical characteristics. 

 

Figure 8: t-SNE Visualization of AI and Human Essays. 

Classification Performance Evaluation 

The classification models used to differentiate between AI-

generated and human-written essays demonstrated remarkably 

high accuracy, reinforcing the clear separation previously 

observed in the t-SNE plot. As shown in Table 3, the first 

classifier achieved an overall accuracy of 98%. It recorded a 

precision of 1.00 for human essays and 0.97 for AI essays, with 

recall values of 0.97 for human essays and 1.00 for AI essays. 

The average F1-score of 0.98 indicated a strong balance 

between precision and recall for both categories. Similarly, the 

Random Forest classifier also performed well, attaining an 

accuracy of 95.75%. Its confusion matrix showed that all AI 

essays were correctly identified, although 17 human essays 

were misclassified as AI. Both classes achieved F1-scores of 

0.96, demonstrating the model's robustness. These findings 

underscore the effectiveness of linguistic features in 

distinguishing between AI and human texts, suggesting they 

 

 

 

 

(a) 

(b) 
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are highly discriminative and well-suited for automated 

detection. Notably, the perfect recall for AI essays across both 

models indicates that AI-generated content often exhibits 

repetitive or formulaic patterns that are easily and consistently 

detected by the classifiers. 

Table 3: Results of the two classification models used for both AI-generated and Human essays 

    SVM RANDOM FOREST 

    precision Recall f1-score support precision recall f1-score support 

                    

  0 1 0.97 0.98 199 1 0.91 0.96 199 

  1 0.97 1 0.99 201 0.92 1 0.96 201 

                    

accu racy     0.98 400     0.96 400 

macro avg 0.99 0.98 0.98 400 0.96 0.96 0.96 400 

weighted avg 0.99 0.98 0.98 400 0.96 0.96 0.96 400 

 

Figure 9: Confusion Matrix for both SVM and Random Forest 

The bar chart displaying the top 20 important features (as 

determined by a Random Forest model) highlights the words 

that most significantly contribute to distinguishing between AI-

generated and human-authored essays. The importance scores, 

which range from approximately 0.01 to 0.06, indicate the 

relative influence of each feature in the classification process. 

Words such as "don," "going," and "really" are among the most 

influential features, suggesting that these words are more 

indicative of either human or AI authorship. This insight is 

crucial for understanding the linguistic cues that machine 

learning models use to differentiate between the two types of 

essays. 

The ROC curve, which shows the performance of both SVM 

and Random Forest models, indicates that both models have 

excellent classification capabilities, with an AUC (Area Under 

the Curve) of 1.00. This suggests that the models can perfectly 

distinguish between AI and human essays based on the features 

extracted. The high true positive rate and low false positive rate 

demonstrate the models' robustness in classifying essays 

accurately. 

 

Figure 10: ROC Curve for SVM and Random Forest 
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Figure 11:  Top 20 RF Model important features to 

distinguish between AI-generated and human-authored 

essays Curve 

5. CONCLUSION 
This research contribute to a deeper understanding of the 

linguistic characteristics of AI-generated content, with 

implications for improving AI systems and addressing 

misconceptions about AI writing. These results suggest that it 

is possible to reliably differentiate between human and AI 

essays using machine learning models based on stylistic and 

lexical features. The results indicate that AI-generated essays 

tend to use a distinct vocabulary, when compare to human-

authored essays.  The analysis of next-word prediction 

algorithms revealed that temperature settings significantly 

influence word selection probabilities in AI models. Higher 

temperature values increase the randomness of word choice, 

reducing the likelihood of selecting highly probable words.  

The machine learning classification using SVM and Random 

Forests achieved remarkable accuracy in differentiating 

between AI and human essays, reinforcing the clear separation 

observed in linguistic patterns. In conclusion, this research has 

contributed to a deeper understanding of the linguistic 

characteristics of AI-generated content, with implications for 

improving AI systems and addressing misconceptions about AI 

writing. 

Future research can extend this work by incorporating deeper 

contextual and semantic features, as well as transformer-based 

models, to improve robustness across diverse genres, 

languages, and evolving AI systems. Additionally, longitudinal 

studies can explore how advancements in generative models 

and adaptive temperature controls influence detectability over 

time and inform fair, ethical AI-detection frameworks. 
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