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ABSTRACT
In this article, we apply the generalized projective Riccati equa-
tions method with the aid of symbolic computation to construct
new exact traveling wave solutions with parameters for two nonlin-
ear PDEs describing nonlinear transmission lines (NLTL). The first
equation describes the model of governing wave propagation in the
NLTL as nonlinear low-pass electrical lines. The second equation
describes pulse narrowing nonlinear transmission lines. The ob-
tained solutions include, kink and anti-kink solitons, bell (bright)
and anti-bell (dark) solitary wave solutions, hyperbolic solutions
and trigonometric solutions. Based on Kirchhoff’s current law and
Kirchhoff’s voltage law, the given nonlinear PDEs have been de-
rived and can be reduced to nonlinear ordinary differential equa-
tions (ODEs) using a simple transformation. The given method in
this article is straightforward and concise, and it can also be applied
to other nonlinear PDEs in mathematical physics.
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1. INTRODUCTION
In the recent years, investigations of exact solutions to nonlinear
PDEs play an important role in the study of nonlinear physical
phenomena in such as fluid mechanics, hydrodynamics, optics,
plasma physics, solid state physics, biology and so on. Several
methods for finding the exact solutions to nonlinear equations in
mathematical physics have been presented, such as the inverse
scattering method [1], the Hirota bilinear transform method [2],
the truncated Painlevé expansion method [3-6], the Bäcklund
transform method [7,8], the exp-function method [9-11], the
tanh-function method [12,13], the Jacobi elliptic function expan-
sion method [14-16], the (G

′

G
)-expansion method [17-22], the

modified (G
′

G
)-expansion method [23], the (G

′

G
, 1
G
)-expansion

method [24-27], the modified simple equation method [28-30],
the multiple exp-function algorithm method [31,32], the trans-
formed rational function method [33], the local fractional series
expansion method [34], the first integral method [35,36],the gen-
eralized Riccati equation mapping method [37,38], the gener-
alized projective Riccati equations method [39-44] and so on.
Conte and Musette [39] presented an indirect method to seek
more solitary wave solutions of some NPDEs that can be ex-
pressed as polynomials in two elementary functions which sat-
isfy a projective Riccati equation [45]. Using this method, many
solitary wave solutions of many NPDEs are found [42,45]. Re-
cently, Yan [43] developed further Conte and Musette’s method
by introducing more generalized projective Riccati equations.
The objective of this article is to use the generalized projective
Riccati equations method to construct the exact solutions of the
following two nonlinear PDEs:

(1) The nonlineae PDE governing wave propagation in nonlinear
low-pass electrical transmission lines [46]:

∂2V (x, t)

∂t2
− α∂

2V 2(x, t)

∂t2
+ β

∂2V 3(x, t)

∂t2

−δ2 ∂
2V (x, t)

∂x2
− δ4

12

∂4V (x, t)

∂x4
= 0, (1.1)

where α, β and δ are constants, while V (x, t) is the voltage
in the transmission lines. The variable x is interpreted as the
propagation distance and t is the slow time. The physical details
of the derivation of Eq. (1.1) using the Kirchhoff’s laws are
given in [46], which are omitted here for simplicity. Note that
Eq. (1.1) has been discussed in [46] using an auxiliary equation
method [47] and its exact solutions have been found. Also,
this equation have been studied in [48] using the new Jacobi
elliptic function expansion method and its exact traveling wave
solutions have been obtained.

(2) The nonlinear PDE describing pulse narrowing nonlin-
ear transmission lines [49]:

∂2φ(x, t)

∂t2
− 1

LC0

∂2φ(x, t)

∂x2
− b1

2

∂2φ2(x, t)

∂t2

− δ2

12LC0

∂4φ(x, t)

∂x4
= 0, (1.2)

where φ(x, t) is the voltage of the pulse and C0, L, δ and b1 are
constants. The physical details of the derivation of Eq. (1.2) is
elaborated in [49] using the Kirchhoff’s current law and Kirch-
hoff’s voltage law, which are omitted here for simplicity. It is
well-known [49] that Eq. (1.2) has the solution:

φ(x, t) =
3(v2−v20)
b1v2

sech2

[√
3(v2−v20)
v0

(
(x−vt)
δ

)]
, (1.3)

where v is the propagation velocity of the pulse and v0 = 1√
LC0

provided v > v0 and LC0 > 0. Recently Zayed and Alurrfi
have discussed Eq. (1.2) in [50] using the new Jacobi elliptic
function expansion method and determined its exact traveling
wave solutions.
This article is organized as follows: In Sec. 2, the description of
the generalized projective Riccati equations method is given. In
Sec. 3, we use the given method described in Sec. 2, to find exact
solutions of Eqs. (1.1) and (1.2). In Sec. 4, physical explanations
of some results are presented. In Sec. 5, some conclusions are
obtained.
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2. DESCRIPTION OF THE GENERALIZED
PROJECTIVE RICCATI EQUATIONS
METHOD

Consider a nonlinear PDE in the form

P (u, ux, ut, uxx, utt, ...) = 0, (2.1)

where u = u(x, t) is an unknown function, P is a polynomial
in u(x, t) and its partial derivatives in which the highest order
derivatives and nonlinear terms are involved. Let us now give
the main steps of the generalized projective Riccati equations
method [39-44]:

Step 1. We use the following transformation:

u(x, t) = u(ξ), ξ = x− vt, (2.2)

where v is velocity of the propagation , to reduce Eq. (2.1) to the
following nonlinear (ODE):

H(u, u′, u′′, ...) = 0, (2.3)

where H is a polynomial of u(ξ) and its total derivatives

u′(ξ), u′′(ξ), ... and ′ =
d

dξ
.

Step 2. We suppose that the solution of Eq. (2.3) has the
form:

u(ξ) = A0 +

N∑
i=1

σi−1(ξ) [Aiσ(ξ) +Biτ(ξ)] , (2.4)

where A0, Ai and Bi are constants to be determined later. The
functions σ(ξ) and τ(ξ) satisfy the ODEs:

σ′(ξ) = εσ(ξ)τ(ξ), (2.5)

τ ′(ξ) = R+ ετ2(ξ)− µσ(ξ), ε = ±1, (2.6)

where

τ2(ξ) = −ε
(
R− 2µσ(ξ) +

µ2 + r

R
σ2(ξ)

)
, (2.7)

where r = ±1 and R, µ are nonzero constants.

If R = µ = 0, Eq. (2.3) has the formal solution:

u(ξ) =

N∑
i=0

Aiτ
i(ξ) (2.8)

where τ(ξ) satisfies the ODE:

τ ′(ξ) = τ2(ξ). (2.9)

Step 3. We determine the positive integer N in (2.4) by using
the homogeneous balance between the highest-order derivatives
and the nonlinear terms in Eq. (2.3).

Step 4. Substitute (2.4) along with Eqs. (2.5)-(2.7) into
Eq.(2.3) or ((2.8) along with Eq. (2.9) into Eq. (2.3)). Collecting
all terms of the same order of σj(ξ)τ i(ξ) (j = 0, 1,...; i = 0, 1)
(or τ j(ξ), j = 0, 1, ... ). Setting each coefficient to zero, yields a
set of algebraic equations which can be solved to find the values
of A0, Ai, Bi, v, µ and R.

Step 5. It is well known [41,44] that Eqs. (2.5) and (2.6)
admits the following solutions:

Case 1. When ε = −1, r = −1, R > 0,

σ1(ξ) =
Rsech(

√
Rξ)

µsech(
√
Rξ)+1

, τ1(ξ) =
√
R tanh(

√
Rξ)

µsech(
√
Rξ)+1

, (2.10)

Case 2. When ε = −1, r = 1, R > 0,

σ2(ξ) =
Rcsch(

√
Rξ)

µcsch(
√
Rξ)+1

, τ2(ξ) =
√
R coth(

√
Rξ)

µcsch(
√
Rξ)+1

. (2.11)

Case 3. When ε = 1, r = −1, R > 0,

σ3(ξ) =
R sec(

√
Rξ)

µ sec(
√
Rξ)+1

, τ3(ξ) =
√
R tan(

√
Rξ)

µ sec(
√
Rξ)+1

, (2.12)

σ4(ξ) =
R csc(

√
Rξ)

µ csc(
√
Rξ)+1

, τ4(ξ) = −
√
R cot(

√
Rξ)

µ csc(
√
Rξ)+1

. (2.13)

Case 4. when R = µ = 0,

σ5(ξ) =
C

ξ
, τ5(ξ) =

1

εξ
, (2.14)

where C is a nonzero constant.

Step 6. Substituting the values of A0, Ai, Bi, v, µ and R
as well as the solutions (2.10)-(2.14) into (2.4) we obtain the
exact solutions of Eq. (2.1).

3. EXACT SOLUTIONS OF EQUATIONS (1.1)
AND (1.2) USING THE GIVEN METHOD OF
SEC. 2

In this section, we apply the generalized projective Riccati equa-
tions method of Sec. 2 to find families of new exact solutions of
Eqs. (1.1) and (1.2).

3.1 Exact solutions of the nonlinear PDE (1.1)
In this subsection, we find the exact wave solutions of Eq. (1.1).
To this end, we use the transformation

V (x, t) = V (ξ), ξ =
√
k (x− vt) , (3.1)

to reduce Eq. (1.1) to the following nonlinear ODE:

d2

dξ2

{
k2δ4

12
d2V
dξ2

+ (kδ2 − kv2)V + αkv2V 2 − βkv2V 3
}
= 0.

(3.2)

Integrating Eq. (3.2) twice and vanishing the constants of
integration, we find the following ODE:

K2

12
d2V
dξ2

+ (K − U)V + αUV 2 − βUV 3 = 0. )(3.3)

where K = kδ2 and U = kv2.
Balancing d2V

dξ2
with V 3 gives N = 1. Therefore, (2.4) reduces

to

V (ξ) = A0 +A1σ(ξ) +B1τ(ξ), (3.4)

where A0, A1 and B1 are constants to be determined such that
A1 6= 0 or B1 6= 0.
Substituting (3.4) and using (2.5)-(2.7) into Eq. (3.3), the
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left-hand side of Eq. (3.3) becomes a polynomial in σ(ξ) and
τ(ξ). Setting the coefficients of this polynomial to be zero,
yields the following system of algebraic equations:

σ3 : −UβA3
1 − 1

R
ε
(
1
6
K2ε2A1 − 3UβA1B

2
1

)
(µ2 + r) = 0,

σ2 : − ε
R
(UαB2

1 − 3UβA0B
2
1) (µ

2 + r)− 1
12
K2µεA1

− 1
12
K2µεA1 − 3UβA0A

2
1 = 0,

+UαA2
1 = 0,

σ2τ : 1
R
ε
(
UβB3

1 − 1
6
K2ε2B1

)
(µ2 + r)− 3UβA2

1B1 = 0,

σ : A1 (K − U)− εR
(
1
6
K2ε2A1 − 3UβA1B

2
1

)
+2εµ (UαB2

1 − 3UβA0B
2
1)− 3UβA2

0A1

+2UαA0A1 +
1
12
K2RεA1 = 0,

στ : −2µε
(
UβB3

1 − 1
6
K2ε2B1

)
− 1

4
K2µεB1

+2UαA1B1 − 6UβA0A1B1 = 0,

τ : B1 (K − U) +Rε
(
UβB3

1 − 1
6
K2ε2B1

)
−3UβA2

0B1 + 2UαA0B1 +
1
6
K2RεB1 = 0,

σ0 : A0 (K − U)−Rε (UαB2
1 − 3UβA0B

2
1)

+UαA2
0 − UβA3

0 = 0. (3.5)

Case 1. If we substitute ε = −1 into the algebraic equations
(3.5) and solve them by Maple 14, we have the following results:

Result 1. We have

K = − 24α2(µ2+r)

(−9βµ2+2rα2+2µ2α2)R
, U = 216α2βµ2(µ2+r)

(−9βµ2+2rα2+2µ2α2)2R
,

A0 = 0, A1 = 2α(µ2+r)
3βµR

, B1 = 0. (3.6)

From (2.10), (2.11), (3.4) and (3.6), we deduce that if r = −1,
then we have the exact wave solution

V (ξ) = 2α(µ2−1)
3βµR

[
Rsech(

√
Rξ)

µsech(
√
Rξ)+1

]
, (3.7)

where
ξ =

√
− 24α2(µ2−1)
δ2(−9βµ2−2α2+2µ2α2)R

x−
√

216α2βµ2(µ2−1)
(−9βµ2−2α2+2µ2α2)2R

t,
provided that β(µ2 − 1) > 0 and 9βµ2 > 2α2(µ2 − 1).

while if r = 1, then we have the exact wave solution

V (ξ) = 2α(µ2+1)
3βµR

[
Rcsch(

√
Rξ)

µcsch(
√
Rξ)+1

]
, (3.8)

where
ξ =

√
− 24α2(µ2+1)

δ2(−9βµ2+2α2+2µ2α2)R
x−
√

216α2βµ2(µ2+1)

(−9βµ2+2α2+2µ2α2)2R
t,

provided that β > 0 and 9βµ2 > 2α2(µ2 + 1).

Result 2. We have

K = − 24α2

(2α2−9β)R , U = 216α2β
(2α2−9β)2R , A0 =

α

3β
,

A1 = ±α
√
µ2+r

βR
, B1 = ± α

3β
√
R
. (3.9)

In this case, we deduce that if r = −1, then we have the exact
wave solution

V (ξ) = α
3β

[
1±
√
µ2−1sech(

√
Rξ)+tanh(

√
Rξ)

µsech(
√
Rξ)+1

]
, (3.10)

while if r = 1, then we have the exact wave solution

V (ξ) = α
3β

[
1±
√
µ2+1csch(

√
Rξ)+coth(

√
Rξ)

µcsch(
√
Rξ)+1

]
, (3.11)

where
ξ =

√
− 24α2

δ2(2α2−9β)Rx −
√

216α2β
(2α2−9β)2R t, provided that β > 0

and 9β > 2α2.

Case 2. If we substitute ε = 1 and r = −1 into the alge-
braic equations (3.5) and solve them by Maple 14, we have the
following results:

Result 1. We have

K = 24α2(µ2−1)
(−9βµ2−2α2+2µ2α2)R

, U = − 216α2βµ2(µ2−1)
(−9βµ2−2α2+2µ2α2)2R

,

A0 = 0, A1 = 2α(µ2−1)
3βµR

, B1 = 0. (3.12)

From (2.12), (2.13), (3.4) and (3.12), we deduce the following
exact wave solutions

V (ξ) = 2α(µ2−1)
3βµR

[
R sec(

√
Rξ)

µ sec(
√
Rξ)+1

]
, (3.13)

or

V (ξ) = 2α(µ2−1)
3βµR

[
R csc(

√
Rξ)

µ csc(
√
Rξ)+1

]
, (3.14)

where
ξ =

√
24α2(µ2−1)

δ2(−9βµ2−2α2+2µ2α2)R
x−

√
− 216α2βµ2(µ2−1)

(−9βµ2−2α2+2µ2α2)2R
t,

provided that β(µ2 − 1) < 0 and 9βµ2 > 2α2(µ2 − 1).

3.2 Exact solutions of the nonlinear PDE (1.2)
In this subsection, we find the exact solutions of Eq. (1.2). To
this end, we use the transformation (2.2) to reduce Eq. (1.2) to
the following nonlinear ODE:

φ′′(ξ) + k1φ(ξ) + k2φ
2(ξ) = 0, (3.15)

where

k1 = − 12(v2−v20)
δ2v20

, k2 = 6b1v
2

δ2v20
. (3.16)

Balancing φ′′ with φ2 gives N = 2. Therefore, (2.4) re-
duces to

φ(ξ) = A0 +A1σ(ξ) +A2σ
2(ξ)

+B1τ(ξ) +B2σ(ξ)τ(ξ), (3.17)

where A0, A1 , A2, B1and B2 are constants to be determined
such that A2 6= 0 or B2 6= 0.
Substituting (3.17) and using (2.5)-(2.7) into Eq. (3.15), the
left-hand side of Eq. (3.15) becomes a polynomial in σ(ξ) and
τ(ξ). Setting the coefficients of this polynomial to be zero,
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yields the following system of algebraic equations:

σ4 : A2
2k2 − 1

R
ε (µ2 + r) (6A2ε

2 + k2B
2
2) = 0,

σ3 : 2εµ (6A2ε
2 + k2B

2
2)− 2µεA2 + 2A1A2k2

− ε
R
(µ2 + r) (2A1ε

2 + 2B1B2k2) = 0,

σ3τ : 2A2B2k2 − 6
R
ε3B2 (µ

2 + r) = 0,

σ2 : k2 (A
2
1 + 2A0A2)− εR (6A2ε

2 + k2B
2
2)

+2εµ (2A1ε
2 + 2B1B2k2)− ε

R
B2

1k2 (µ
2 + r)

+A2k1 + 2RεA2 − µεA1 = 0,

σ2τ : ε
(
12µε2B2 − 2

R
ε2B1 (µ

2 + r)
)

+2k2 (A1B2 +A2B1)− 6µεB2 = 0,

σ : −ε (R (2A1ε
2 + 2B1B2k2)− 2µB2

1k2)
+A1k1 +RεA1 + 2A0A1k2 = 0,

στ : B2k1 + ε (4µε2B1 − 6Rε2B2)− 3µεB1

+2k2 (A0B2 +A1B1) + 5RεB2 = 0,

τ : 2RB1ε− 2RB1ε
3 +B1k1 + 2A0B1k2 = 0,

σ0 : A2
0k2+A0k1−RεB2

1k2 = 0. (3.18)

Case 1. If we substitute ε = −1 into the algebraic equations
(3.18) and solve them by Maple 14, we have the following
results:

Result 1. We have

R = −k1, A0 = 0, A1 =
3µ

k2
, A2 =

3(µ2 + r)

k1k2
,

B1 = 0, B2 = ± 3

k2

√
− (µ2 + r)

k1
, (3.19)

where k1 < 0, µ2 + r > 0.
From (2.10), (2.11), (3.17) and (3.19), we deduce that if r = −1,
then we have the exact wave solution

φ(ξ) = −
3k1sech(

√
−k1ξ)

(
µ+sech(

√
−k1ξ)±

√
µ2−1 tanh(

√
−k1ξ)

)
k2(µsech(

√
−k1ξ)+1)

2 ,

(3.20)

while if r = 1, then we have the exact wave solution

φ(ξ) = −
3k1csch(

√
−k1ξ)

(
µ−csch(

√
−k1ξ)±

√
µ2+1coth(

√
−k1ξ)

)
k2(µcsch(

√
−k1ξ)+1)

2 ,

(3.21)

Result 2.

A0 = −k1
k2
, A1 =

3µ

k2
, A2 = − 3(µ2+r)

k1k2
,

B1 = 0, B2 = ± 3

k2

√
(µ2 + r)

k1
, R = k1. (3.22)

where k1 > 0, µ2 + r > 0
In this case, we deduce that if r = −1, then we have the exact
wave solution

φ(ξ) = − k1
k2

(
1 +

3sech(
√
k1ξ)

(
−µ−sech(

√
k1ξ)±

√
µ2−1 tanh(

√
k1ξ)

)
(µsech(

√
k1ξ)+1)

2

)
,

(3.23)

while if r = 1, then we have the exact wave solution

φ(ξ) = − k1
k2

(
1 +

3csch(
√
k1ξ)

(
−µ+csch(

√
k1ξ)±

√
µ2+1coth(

√
k1ξ)

)
(µcsch(

√
k1ξ)+1)

2

)
,

(3.24)

Case 2. If we substitute ε = 1 and r = −1 into the algebraic
equations (3.18) and solve them by Maple 14, we have the
following results:

Result 1. We have

A0 = 0, A1 = −3µ

k2
, A2 =

3(µ2 − 1)

k1k2
,

B1 = 0, B2 = ± 3

k2

√
− (µ2 − 1)

k1
, R = k1, (3.25)

where k1 > 0, µ2 − 1 < 0.
From (2.10), (2.11), (3.17) and (3.25), we deduce the following
exact wave solutions

φ(ξ) = −
3k1 sec(

√
k1ξ)

(
µ+sec(

√
k1ξ)±

√
−(µ2−1) tan(

√
k1ξ)

)
k2(µ sec(

√
k1ξ)+1)

2 ,

(3.26)

or

φ(ξ) = −
3k1 csc(

√
k1ξ)

(
µ+csc(

√
k1ξ)±

√
−(µ2−1) cot(

√
k1ξ)

)
k2(µ csc(

√
k1ξ)+1)

2 ,

(3.27)

Result 2.

A0 = −k1
k2
, A1 = −3µ

k2
, A2 = −3(µ2 − 1)

k1k2
,

B1 = 0, B2 = ± 3

k2

√
(µ2 − 1)

k1
, R = −k1. (3.28)

where k1 < 0, µ2 − 1 < 0
In this case, we deduce the following exact wave solutions

φ(ξ) = k1
k2

(
−1 +

3 sec(
√
−k1ξ)

(
µ+sec(

√
−k1ξ)±

√
−(µ2−1) tan(

√
−k1ξ)

)
(µ sec(

√
−k1ξ)+1)

2

)
,

(3.29)

or

φ(ξ) = − k1
k2

(
1 +

3csc(
√
−k1ξ)

(
−µ−csc(

√
−k1ξ)±

√
−(µ2−1) cot(

√
−k1ξ)

)
(µ csc(

√
−k1ξ)+1)

2

)
.

(3.30)

4. PHYSICAL EXPLANATIONS OF SOME
RESULTS

Solitary waves can be obtained from each traveling wave solu-
tion by setting particular values to its unknown parameters. In
this section, we have presented some graphs of solitary waves
constructed by taking suitable values of involved unknown pa-
rameters to visualize the underlying mechanism of the original
equation. Using mathematical software Maple 14, three dimen-
sional plots of some obtained exact traveling wave solutions have
been shown in Figure 1- Figure. 6.
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Fig. 1. The plot of the solution (3.7) when µ = 2, α = 1, δ = 1,
β = 2, R = 1.

4.1 The nonlinear PDE (1.1) governing wave
propagation in nonlinear low-pass electrical
transmission lines

The obtained solutions for the nonlinear PDE (1.1) incorporate
three types of explicit solutions namely, hyperbolic and trigono-
metric. From these explicit results it is easy to say that the so-
lution (3.7) is a bell-shaped soliton solution; the solution (3.8)
is a singular bell-shaped soliton solution; the solution (3.10) is
a bell-kink shaped soliton solution; the solution (3.11) is a sin-
gular bell-kink shaped soliton solution and the solutions (3.13),
(3.14) are periodic solutions. The graphical representation of the
solutions (3.7), (3.10) and (3.14) can be plotted as follows:

4.2 The nonlinear PDE (1.2) describing pulse
narrowing nonlinear transmission lines

The obtained solutions for the nonlinear PDE (1.2) are hyper-
bolic and trigonometric. From the obtained solutions for this
equation we observe that the solutions (3.20), (3.23) are bell-kink
shaped soliton solutions; the solutions (3.21), (3.24) are singular
bell-kink shaped soliton solutions and the solutions (3.26)-(3.30)
are periodic solutions. The graphical representation of the solu-
tions (3.21), (3.23) and (3.29) can be plotted as follows:

5. CONCLUSIONS
The generalized projective Riccati equations method described
in Section 2 of this article has been applied to construct many
new exact solutions of the nonlinear PDEs (1.1) and (1.2) which
describe the nonlinear low-pass electrical transmission lines and
pulse narrowing nonlinear transmission lines respectively, with
the aid of Maple 14. On comparing our results obtained in this
article with the well-known results obtained in [46,48,49,50] we

Fig. 2. The plot of the solution (3.10) when µ = 2, α = 1, δ = 2,

β = 1, R = 2.

deduce that our results are new and not published elsewhere. The
proposed method of this paper is effective and can be applied
to many other nonlinear PDEs. Finally, all solutions obtained in
this article have been checked with the Maple 14 by putting them
back into the original equations.
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